
Understanding Effectiveness of Multi-error-bounded
Lossy Compression for Preserving Ranges of

Interest in Scientific Analysis
Yuanjian Liu∗, Sheng Di†, Kai Zhao‡, Sian Jin§, Cheng Wang†,

Kyle Chard∗, Dingwen Tao§, Ian Foster∗, Franck Cappello†
∗ University of Chicago, Chicago, IL, USA

† Argonne National Laboratory, Lemont, IL, USA
‡ University of California, Riverside, CA, USA
§ Washington State University, Washington, USA

Abstract—Lossy compression frameworks have been proposed
as a method to reduce the size of data produced by scientific
simulations. However, they do so at the expense of precision
and existing compressors apply a single error bound across
the entire dataset. Varying the precision across user-specified
ranges of scalar values appears to be a promising approach
to further improve compression ratios while retaining precision
in specific areas of interest. In this work, we investigate a
specific compression method, based on the SZ framework, that
can set multiple error bounds. We evaluate its effectiveness by
applying it to real-world datasets which have concrete precision
requirements. Our results show that the multi-error-bounded
lossy compression can improve compression ration by 15% with
negligible overhead in compression time.

I. INTRODUCTION

Scientific applications such as the Community Earth System
Model (CESM) [1] and Hardware/Hybrid Accelerated Cos-
mology Code (HACC) [2] can generate vast volumes of data.
Storing these data in their raw format for analysis may be ex-
pensive and ineffective. Error-bounded lossy compressors [3],
[4], [5], [6], [7], [8], [9] can significantly reduce data sizes and
thus enable more effective storage and use of such data. For
instance, SZ [4], [10], ZFP [3], and MGARD [11] allow users
to specify an absolute error bound which limits the maximum
compression error for each data point with a constant. Thus,
the compressor can reduce the data size by allowing acceptable
error for each data point such that they may be predicted
by neighboring data points. Climate researchers have shown
that the lossy reconstructed data are acceptable for post hoc
analysis [12], [13], [14].

Most compression algorithms treat every part of the data in
a uniform manner, so that researchers cannot customize the
configuration to allow different error bounds for different data
ranges. Yet in environmental science datasets, for example,
different values in different ranges may have different signif-
icance to the post hoc analysis. For instance, to trace a hurri-
cane’s trajectory, researchers desire higher precision only when
the elevation of the water surface is above a warning sealevel
(such as 1 meter), since these points indicate the movement of
a hurricane. Similarly, the Nyx cosmological simulation [15]

determines the construction of dark matter halos primarily by
values in a specific value range: [81, 83]. Making values in
this range more precise than others can maintain post analysis
result accuracy with only modest increase to the file size. Thus,
there is a pressing need to develop new algorithms that treat
different ranges of values with different precision.

In this paper, we investigate a novel compression method
that extends the SZ error-bounded lossy compression frame-
work to support different error bounds in terms of value
ranges. We leverage visualization and quantitative measure-
ments to demonstrate that the multi-error-bounded lossy com-
pression can significantly improve compression quality accord-
ing to user’s diverse requirements on different value ranges.

We summarize our contributions as follows.
• We formalize the problem of setting different error

bounds for different value ranges so that both prediction-
based and transformation-based algorithms can share the
same prerequisite and optimize for the same goal.

• We present a multi-error-bounded compression algorithm
that can adapt to various required details via multiple
error bounds in different value ranges.

• We evaluate our approach on real-world datasets with
different post hoc analyses and verify the effectiveness
of the multi-error-bounded compression. Experimental
results show that better visual qualities can be reached
and higher compression ratios can be obtained with
appropriate configurations.

The rest of the paper is organized as follows. In Section II,
we discuss related work. In Section III we formulate the prob-
lem of defining different ranges of interest. In Section IV we
present the (de)compression algorithm that supports multiple
error bounds for different value ranges. In Section V, we
present our evaluation results on two real-world datasets. In
Section VI, we summarize our work.

II. RELATED WORK

Current error-bounded lossy compressors offer different
types of error bounds to address diverse user requirements. The
most common error-bounding approach uses an absolute error

bound, which ensures that the pointwise difference between
the original raw data and reconstructed data is confined within
a constant threshold. Many compressors such as SZ [4],
[10], [16], ZFP [3], [17], and MGARD [11] support absolute
error bounds. Other error-bounding approaches have also been
exploited to adapt to diverse user requirements. For instance,
SZ supports pointwise relative error bound [18]; and Digit
Rounding [19], Bit Grooming [20], zfp [3], and FPZIP [21]
support a type of precision mode that allows users to specify
the number of bits to be truncated in the end of the mantissa,
to control the data distortion at different levels.

Recent research has explored methods for respecting spe-
cific metrics in order to satisfy user demands on a specific
quality of interest. For example, Tao et al. [22] developed a for-
mula that can link the target peak signal-to-noise ratio (PSNR)
metric to an absolute error bound setting in SZ such that SZ
can use a user-specified PSNR metric. MGARD [11] supports
various norm error metrics and linear quantities of interest
in its multigrid compression method. However, none of the
existing compression methods allow users to define different
error bounds for different data based on value ranges. There
is certainly an opportunity to further optimize compression
quality by allowing less precision in non-interesting ranges.

III. PROBLEM FORMULATION

In this section, we first describe what we consider pre-
serving ranges of interest. We then formulate the target and
constraints of this research problem.

In practice, scientists may not have the same precision needs
for all the values in the global range. Instead, they often have
specific value ranges of interest because of particular features
on which they wish to analyze. Thus, they may wish to set
different error bounds in various value ranges of the dataset.

We formulate the multi-error-bounded lossy compression
problem as follows. Given a scientific dataset D composed
of N floating-point values (either single precision or double
precision), the objective is to develop an error-bounded lossy
compressor that can respect a set of user-defined error bounds
for different value ranges.

There are three important assessment metrics. The first
two are compression speed sc and decompression speed sd,
respectively. They are usually measured in the unit megabytes
per second: i.e., the size (in MB) of the original dataset
processed (either compressed or decompressed) per time unit.
The third evaluation metric is compression ratio (denoted by
ρ) which is defined as follows:

ρ = N ·sizeof(dataType)
Sizecompression

, (1)

where dataType can be either float or double and
Sizecompression is the total size after compression.

Our goal can be formulated as follows:

Maximize ρ

subject to |di − d̂i| ≤ e(di)
(2)

where di denotes the ith data point in the original dataset
D, e(di) denotes the corresponding error bound at data point

di (e.g., in terms of user-specified multi-error-bounded error
bounds), and d̂i is the decompressed value of that data point.
Unlike the prior constant-error-bounded lossy compression,
the error bound here becomes a function of the value range in
which the corresponding data point is located.

The following examples further illustrate how we formulate
the research problem. The Hurricane Katrina simulation is
used to track the location of the hurricane by calculating the
height of the water surface. Accordingly, the researchers focus
on the data whose values are greater than a threshold (e.g.,
1 meter). Based on Formula (2), the target is to maximize
the compression ratio while making sure the relatively higher
values have lower error bound (e.g., if di ≥ 1, then e(di) =
0.01; otherwise, e(di)=0.1). The Nyx cosmological simulation
computes dark matter halo cells based on a threshold located in
the range of [81, 83] (according to the Nyx analysis code [15]).
Thus, for any data point di in [81, 83], their error bounds e(di)
should be lower than e(dj), where dj refers to the data points
that fall outside of the critical range [81, 83]. Setting multiple
error bounds can completely eliminate the distortion of halo
cells calculated by the reconstructed data with the unchanged
compression ratios.

IV. MULTI-ERROR-BOUNDED LOSSY COMPRESSION
FRAMEWORK

We extend the SZ model to support multi-error-bounded
lossy compression in different value ranges. We first introduce
the SZ compression model and then describe how we designed
the multi-error-bounded compression method.

A. SZ Compression Model

The classic error-bounded lossy compression model imple-
mented by SZ is illustrated in Figure 1. As is shown in the
figure, the SZ compression framework is composed of four
key stages: prediction, quantization, Huffman encoding, and
lossless compression. Given a set of raw data, SZ scans the
entire dataset (either pointwise [4], [10] or blockwise [16]) to
predict the data values. In a 1D dataset, the prediction method
is simply a first-order Lorenzo predictor [10], which uses only
the preceding value to approximate the current data point.
In a 2D or 3D dataset, SZ adopts a hybrid data prediction
method combining the first-order Lorenzo predictor (using
three nearby values in the 2D Lorenzo and 7 nearby values in
the 3D Lorenzo) and a linear-regression-based predictor [16].
Lorenzo predictor uses the “decompressed data” with certain
data loss instead of the “original data” in its prediction (oth-
erwise the compression and decompression stages cannot be
synchronized), so the prediction accuracy would be degraded
significantly when the error bound is relatively large.

The second stage in SZ uses a linear quantization method to
convert the distance between the predicted value and original
value to an integer value (called a quantization code or quan-
tization number) for each data point. A customized Huffman
encoder is then applied to compress the integer quantization
codes, followed by a lossless dictionary coding (Zstd [23] by
default in SZ).

2

Prediction Quantization
Huffman
Encoding

Lossless
Compression

Predicted ValueData Value
Quantization

Code
Encoded Value

Compressed
Value

Fig. 1. SZ Compression Framework: The compression process is separated
into four stages: (1) The prediction stage computes a value using nearby data
points and can only be precise when data satisfy the properties of certain
predictors; (2) The quantization stage moves those imprecise predicted data
back to the error bounded region; (3) Huffman Coding can significantly reduce
the file size when values cluster and therefore serves well for quantization
code; (4) The final lossless compression stage is important because our
processing outputs many repeated patterns and the lossless compression can
significantly improve the compression ratio.

B. Preserving Multivalue-Range-Based Error Bounds

As the name implies, the multivalue-range error-bound
model is defined by an array of triplets, each containing
the low, high, and error bound. The fundamental idea is to
apply different quantization bins (whose length is twice the
error bound) to different ranges. The algorithm will calculate
the total number of varied-length quantization bins involved
between the predicted value and the raw value during the
compression, and identify the quantization bin based on the
multi-range error bounds during the decompression.

Predicted Value
Data Value eb2

(A)

Decompressed
Data

eb1

Range Boundary

Range
Boundary

Predicted Value Data Value
eb1

(B)

eb2

Decompressed
Data

Final Start

2*eb1

2*eb1 2*eb1 2*eb2 2*eb2

Fig. 2. Multirange error-bound model Situation A: when the predicted
value and raw value are in the same range, it is identical to the single range’s
case except for some edge conditions; Situation B: when the predicted value
and raw value are in different ranges, we use quantization bins to infer in
which range the value falls and use the final range’s starting point to compute
the decompressed data.

Before describing the detailed methodology, we first review
the notation used in this paper (see Table I). Let di denote the
original data value at position i. Let pi denote the predicted
value for di. We use R to denote the radius of the quantization
bin (for instance, if there are 65,536 quantization bins, the
radius R is equal to 32,768). Let d̂i denote the decompressed
data value. Let r(x) be a function that returns a value range
index based on a given data value x=di. The range indexes

go from 0 to the number of ranges minus 1, which is a
simple map from the ranges of values to integers. Let e(x)
be a function that returns the user-specified error bound based
on a given value range (x=r(di)). Let l(x) denote the length
of some value range based on the range index (x = r(di)).
Let low(r(x)) and high(r(x)) denote the low boundary and
high boundary of the value range r(x), respectively. Let q
denote the quantization code, and let qs denote the shifted
quantization number.1

TABLE I
KEY NOTATIONS

Notation Description
di original data value at position i
pi predicted value of di
d̂i reconstructed data value after decompression
r(x) the value range of data point x (di)
e(x) specified error bound based on a value range (x=r(di))
l(x) length of some value range (x = r(di))
low(r(x)) lower boundary of value range r(x)
high(r(x)) higher boundary of value range r(x)
q quantization index (a.k.a., quantization code)
qs shifted quantization number

The key part of the algorithm design is to calculate the total
number of quantization bins that go through multiple ranges
and make sure the decompression stage can synchronize with
the compression stage. The algorithm needs to ensure it arrives
in the correct range and gets the correct quantization num-
ber before calculating the decompressed value. Algorithm 1
presents the pseudocode of the multi-range-based quantization
in the compression stage.

Algorithm 1 MULTIRANGE QUANTIZATION IN COMPRES-
SION STAGE
Input: user-specified ranges and error bounds ε
Output: compressed data stream in form of bytes

1: for each data point di do
2: Use the composed prediction that combines Lorenzo predictor and

linear regression predictor to obtain a prediction value pi.
3: Ip ← r(pi). /*Obtain range index of pi*/
4: Id ← r(di). /*Obtain range index of di*/
5: if Id == Ip then
6: q ← round(

(di−pi)
2e(Id)

). /*Quantized distance between di and pi.*/
7: else if Id > Ip then
8: t =

∑Id−1
i=Ip+1

l(i)
2e(i)

. /*Count bins for middle ranges.*/

9: tp = round(
high(Ip)−pi

2e(Ip)
). /*Count quantized distance for Ip.*/

10: td = round(
di−low(Id)

2e(Id)
). /*Count quantization distance for Id.*/

11: q = t + tp + td. /*Get the logic quantization code.*/
12: else
13: t =

∑Ip−1

i=Id+1
l(i)
2e(i)

. /*Count bins for middle ranges.*/

14: tp = round(
high(Id)−d

2e(Id)
). /*Count quantized distance for Id.*/

15: td = round(
pi−low(Ip)

2e(Ip)
). /*Count quantization distance for Ip.*/

16: q = t + tp + td. /*Get the logic quantization code.*/
17: end if
18: qs ← q + R. /*Shift quantization code.*/
19: end for

1Since the C/C++ array has no negative index in an array, the logic
quantization bins [-R,R] need to be shifted to [0, 2R] in our implementation.

3

For each data point, there are two situations to address—
whether the original data and predicted data are in the same
range, as illustrated in Figure 2.

Situation A (line 5∼6): If its original raw value di and its
predicted value pi fall in the same range (i.e., r(di) = r(pi)),
the quantization problem falls back to the traditional linear-
scale quantization [10]. Specifically, we compute the quanti-
zation code and decompressed data as follows.

q = round(di−pi

2e(r(di))
) (3)

d̂i = pi + 2e(r(di)) · q (4)

We use an example to illustrate how the linear-scale quan-
tization works. Suppose the error bound (i.e., e(r(di))) is
20 and we have di=−74, pi=−95. Then di − pi = 21 and
q = round(21/40) = 1. The decompressed value d̂i is −55,
whose distance to the raw value is less than the error bound.

Situation B (line 7∼17): When the raw value di and its
predicted value pi fall in different ranges (i.e., r(di) 6= r(qi)).
In the following text, we describe only the situation with
r(di) > r(qi) (i.e., line 7∼11 shown in the algorithm); the
other situation is similar.

When the counter passes into a different range, we need
to continue adding the quantization bins from the boundary
of the new range. Obviously, the decompressed data value is
determined by the last value range and its quantization bin
size. The formula for reconstructing the decompressed value
is given below (we assume the raw data is greater than the
predicted value, without loss of generality):

qt = round(di−low(r(di))−e(r(di))
2e(r(di))

) (5)

d̂i = low(r(di)) + e(r(di)) + 2e(r(di)) · qt. (6)

We briefly describe the decompression in Algorithm 2.
The core idea is to execute the similar operations in the
compression stage reversely to get the decompressed data from
a predicted data value and the corresponding quantization bins.
As shown in the pseudocode, we first calculate the number of
quantization bins for each value range (line 3∼5). We then
decompress each data point based on the multivalue-range
quantization (lines 6∼34). If the raw data value is lower than
the predicted value (i.e., qj < 0), the code will scan all the
involved value ranges downward (lines 10∼29). Lines 25∼29
refer to the situation that the predicted value and original raw
value fall in the same range. Lines 13∼23 deal with the other
situation where the two values fall in different ranges.

Note that in the real implementation, we need to consider
several edge cases. For instance, when the original data are
near the high or low bound of a range, the quantization value
in this final range might be equal to quantRange[i], causing
the decompressed value to be in the next range. In this case, we
shift the quantization by 1 in the compression stage to ensure
the decompressed data and original data are in the same range.

Algorithm 2 MULTIRANGE QUANTIZATION IN DECOM-
PRESSION
Input: compressed data stream
Output: decompressed data stream in the form of bytes

1: Read ranges and error bounds in the header & initialize multirange
quantizer.

2: Read the quantization bins and unpredictable data.
3: for each range index Ii do
4: l̂i = l(Ii)

2e(Ii)
. /*Calculate the number of quantization bins for each

range*/
5: end for
6: for each decompressed data position j do
7: Use the composed prediction that combines Lorenzo predictor and

linear regression predictor to obtain a prediction value pj .
8: qj = qs − R. /*Get the logic quantization code qj*/.
9: Ip ← r(pj). /*Obtain range index of pj*/

10: if qj < 0 then
11: ∆← pj−low(Ip) /*Compute pj ’s distance to the low boundary*/
12: ∆̂← round(∆/2(e(Ip))) /*Compute the quantized distance*/
13: if qj + ∆̂ < 0 then
14: for i from Ip − 1 to 1 do
15: if qj + l̂i ≥ 0 then
16: d̂j←high(i)−e(i)+(qj+1)·(2·e(i)). /*Get decompressed

data*/
17: if d̂j < low(i) then
18: d̂j ← low(i) + e(i). /*Correct the decompressed

data*/
19: end if
20: else
21: qj ← qj + l̂i. /*Add quantization length for further

search*/
22: end if
23: end for
24: else
25: d̂j ← pj + qj · 2 · (e(Ip)). /*Compute decompressed value*/
26: if d̂j < low(Ip) then
27: d̂j ← low(Ip) + e(Ip). /*Perform correction to avoid

undesired boundary-crossing*/
28: end if
29: end if
30: else if qj == 0 then
31: d̂j ← pj . /*The prediction is accurate, directly use the predicted

value*/
32: else if qj > 0 then
33: Calculate the decompressed data using similar methods. /*Ignore

the details here. It is similar to the case when qj < 0, with just a
few changes to the low bound and high bound and some calculation
differences.*/

34: end if
35: end for

V. EXPERIMENTAL EVALUATION

In this section, we first compare compression time on six
datasets to explore the overhead of our approach. We then
evaluate the compression ratio and post-analysis quality on
two real-world simulation datasets: Nyx [15] and Hurricane
Katrina [24], both of which have needs for extremely precise
data values in specific ranges.

A. Evaluation of Compression Time Overhead

We compare the compression time between our approach
and the SZ compressor on six datasets: QMCPACK [25],
Nyx [15], Miranda [26], Hurricane Isabel [27], RTM, and
CESM [1] as shown in Table II.

We set five ranges for each multi-range compression task
because in most cases users have requirements for only a small

4

TABLE II
BASIC DATASET INFORMATION

Dataset # Fields Dimensions Science
QMCPACK 1 33120*69*69 electronic

structure
of atoms,
molecules,
and solids

RTM 1 449*449*235 Electronic
Miranda 7 256*384*384 hydrodynamics

code for large
turbulence
simulations

CESM 79 1800*3600 Climate
Nyx 6 512*512*512 Cosmology

Hurricane Isabel 13 100*500*500 Weather

Fig. 3. Compression Time Overhead Comparison: The reference point is the
SZ’s single range version, which means using a global error bound for all
data points

number of ranges (often one or two). Thus, evaluating with
five ranges can roughly serve as a worst case scenario for
compression time.

Figure 3 shows that our multi-range algorithm indeed adds
overhead to the compression time, but we can see the overhead
negligible in most cases and less than than 10% in all cases.

B. Nyx Cosmological Simulation

(A) Original Data (B) Fallback Compress (C) OurSol Compress

Fig. 4. Nyx halo cell visualization: The fallback method sets a global error
bound to be 0.5 and the compression ratio is 75. Our solution (C) sets three
ranges, [min, 81) with error bound set to 1, [81, 83) with error bound set to
0.01, and [83, max) with error bound set to 1, and the compression ratio is
78. In the visualization, our solution (C) has cells almost identical to original
data’s result, while the fallback method (B) shows some distortion and the
cells’ position and number is not identical to (A).

We consider compression of the Nyx cosmological simula-

tion with a specific quantity of interest (i.e., dark matter halo
cell information). Dark matter halos play an important role in
the formation and evolution of galaxies and consequently in
cosmological simulations. Halos are overdensities in the dark
matter distribution and can be identified by using different
algorithms; in this instance, we use the Friends-of-Friends
algorithm [28]. For the Nyx simulation, which is an Eulerian
simulation rather than a Lagrangian simulation, the halo-
finding algorithm uses density data to identify halos [29].
When decompressing data there is a risk that some of the
information (e.g., halo cells and halo mass) can be distorted
from the original.

Figure 4 shows visualizations of halo cells using the orig-
inal data and two different compression methods: a fallback
method with global error bound set to 0.5 and our approach
with three different ranges and a smaller error bound (0.01)
applied to the range of [81, 83]. The figure shows that setting
different error bounds for different value ranges can preserve
the features of interest (i.e., halo cells) better than global-range
error-bounded compression. The key reason is that according
to the Nyx halo analysis code, the values in the range of
[81, 83] need to be extremely precise (due to the sophisticated
physics, which we do not describe here).

Table III presents the error for two different post hoc anal-
ysis results using both the fallback compression method with
a single global bound (set to 0.01 and 0.5) and our multirange
approach with three ranges ([min, 81) = 1, [81, 83) = 0.01,
and [83,max) = 1). We present RMSE (Root Mean Square
Error) of cell number differences and mass differences of
halos when compared with results obtained from the raw data.
Specifically, when passed through the post hoc analysis, our
solution can lead to lower RMSE for cell number and halo
mass, which are 7% and 31%, respectively, compared with the
RMSE under the global-range error-bounded compression.

TABLE III
COMPARISON OF DIFFERENT RANGE SETTINGS. FALLBACK SETS ONLY A
GLOBAL ERROR BOUND (HERE 0.01 AND 0.5), AND MULTI-1-0.01-1 USES
OUR MULTIRANGE ERROR-BOUNDED COMPRESSION WITH THREE ERROR

BOUNDS ([MIN, 81)=1, [81, 83)=0.01, AND [83,MAX)=1).

Method RMSE of cell number RMSE of halo mass
Fallback-0.01: 0.089, 125.84
Fallback-0.5: 2.820, 429.26
Multi-1-0.01-1: 0.198, 135.41

C. Hurricane Katrina Simulation

Hurricane Katrina was one of the most devastating storms
and the deadliest hurricane in the history of the United States
because of its high storm surge (over 10 meters on the
Mississippi coast) and high velocity. We use the hourly water
elevation data downloaded from the ADCIRC website in this
study, and the water elevation contour map with a 1-meter
interval at four times—3:00 am and 17:00 pm UTC August
28 and 3:00 am UTC and 14:00 pm UTC August 29—was
plotted for illustrative comparison.

5

(D) Composed; Double
Ranges: [-1, 1) eb=0.1, [1, 10)

eb=0.01; CR=50.78;

(1)

(2)

(3)

(4)

(A)Original* Composed;
Global Range eb=0.01;

CR=38.40;

(C)Fallback Composed; Global
Range eb=0.1; CR=42.9;

(E)Lorenzo Multirange [-1, 0.98)
eb=0.2; [0.98, 1.02) eb=0.001;

[1.02, 10) eb=0.01; CR=80

(B)Fallback Lorenzo; Global
Range eb=0.1; CR=37;

Fig. 5. Each row is a frame of the Hurricane Katrina simulation: (1) is frame 106, (2) is frame 120, (3) is frame 130, and (4) is frame 141. Each column
represents a different setting of ranges and error bounds. Most of the blue data points in the graphs are close to zero. By applying a global range with
error bound to be 0.01 with our solution, the visualization is almost identical to the original data, and therefore we use one column (A) to demonstrate the
visualization result as a reference. The fallback version shown in (B) and (C) uses the original 1D SZ compressor, which does not handle the irrelevant data;
thus it has the lowest compression ratio even with a higher error bound 0.1. “Composed” in (C) and (D) means we use a composed Lorenzo and linear
regression predictor to predict values. “Lorenzo” in (E) means we use only the Lorenzo predictor with no linear regression. Comparing (B) and (C), our
solution wins on the global range test by handling the irrelevant data and using the composed predictor (both Lorenzo and linear regression). Comparing (C)
and (D), our multirange solution wins in both the compression ratio and visualization result. Comparing (D) and (E), we can further improve the compression
ratio by using the Lorenzo predictor only and allowing some distortion in the deep blue area.

Katrina caused water elevation, and we consider elevations
above 1 meter to be significant and therefore preserving a
higher precision in that range. By applying multirange error-
bound configuration, the compression quality (as shown in
Figure 5) can be improved significantly compared with the
original compression quality under the state-of-the-art SZ 2.1;
see Figure 5 (D) and (E) vs. (B) and (C).

In the Katrina dataset, we found there are irrelevant data
with value -99999 mixed in the data points, which represents
the shoreline but breaks the smoothness of normal data points.
The “Fallback” term means using the original SZ compressor
without handling the irrelevant data, while our solution fixes
the irrlevant data points during the compression. This side
effect causes that (D)’s compression ratio is even higher than
(B)’s although with a range of higher precision. We may
further investigate the influence of the irrelevant data in the
future, but in this case at least we can see that by modifying
the setting of ranges and multiple error bounds, we can reach a
better visual quality wihout sacrificing the compression ratio.

VI. SUMMARY

We investigated a novel compression approach that allows
users to set different error bounds in various value ranges.

Our approahc allows users to set the overall lossy compression
quality that can be tolerated to meet their data fidelity require-
ment. Based on our evaluation using real-world simulation
datasets, we report the following key findings.

• Multirange error-bound-based compression can signifi-
cantly improve the visual quality for particular regions
with the same or even higher compression ratios than
traditional compression methods.

• In the Nyx cosmology simulation, the multirange error-
bounded lossy compression can preserve the halo cells
perfectly with a high compression ratio up to 78,
while the global-range error-bounded compression suffers
prominent distortion of cells.

• In the Hurricane Katrica simulation, multirange error-
bounded compression can improve the compression ratio
from 37 (based on SZ) to 80 (an improvement of 116%),
even with higher data fidelity in maintaining the shape of
Hurricane Katrina.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations – the Office of Science and

6

the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering and early testbed platforms, to support the nation’s
exascale computing imperative. The material was supported
by the U.S. Department of Energy, Office of Science, under
contract DE-AC02-06CH11357, and supported by the National
Science Foundation under Grant SHF-1617488, OAC-2003709
and OAC-2003624/2042084. We acknowledge the comput-
ing resources provided on Bebop, which is operated by the
Laboratory Computing Resource Center at Argonne National
Laboratory.

REFERENCES

[1] J. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. Arblaster,
S. Bates, G. Danabasoglu, J. Edwards et al., “The community earth sys-
tem model (CESM), large ensemble project: A community resource for
studying climate change in the presence of internal climate variability,”
Bulletin of the American Meteorological Society, vol. 96, no. 8, pp.
1333–1349, 2015.

[2] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., “HACC: extreme
scaling and performance across diverse architectures,” Communications
of the ACM, vol. 60, no. 1, pp. 97–104, 2016.

[3] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[4] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing
Symposium (IEEE IPDPS). IEEE, 2016, pp. 730–739.

[5] F. Cappello, S. Di, and et al., “Use cases of lossy compression for
floating-point data in scientific data sets,” The International Journal of
High Performance Computing Applications, vol. 33, no. 6, pp. 1201–
1220, 2019.

[6] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’19.
NY, USA: Association for Computing Machinery, 2019.

[7] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Improving
performance of iterative methods by lossy checkponting,” in Proceedings
of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 52–65.

[8] S. Jin, S. Di, X. Liang, J. Tian, D. Tao, and F. Cappello, “Deepsz:
A novel framework to compress deep neural networks by using error-
bounded lossy compression,” in Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’19. New York, NY, USA: ACM, 2019, pp. 159–170.
[Online]. Available: http://doi.acm.org/10.1145/3307681.3326608

[9] D. Tao, S. Di, Z. Chen, and F. Cappello, “In-depth exploration of single-
snapshot lossy compression techniques for n-body simulations,” in 2017
IEEE International Conference on Big Data (Big Data), 2017, pp. 486–
493.

[13] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka, S. A. Mick-
elson, J. Edwards, M. Vertenstein, and A. Wegener, “A methodology for
evaluating the impact of data compression on climate simulation data,”
in HPDC’14, 2014, pp. 203–214.

[10] ——, “Significantly improving lossy compression for scientific data sets
based on multidimensional prediction and error-controlled quantization,”
in IEEE International Parallel and Distributed Processing Symposium
(IEEE IPDPS). IEEE, 2017, pp. 1129–1139.

[11] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5, pp. 65–76,
Dec 2018.

[12] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of lossy
compression for application-level checkpoint/restart,” in 2015 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2015, pp. 914–922.

[14] A. H. Baker, D. M. Hammerling, and T. L. Turton, “Evaluating image
quality measures to assess the impact of lossy data compression applied
to climate simulation data,” Computer Graphics Forum, vol. 38, no. 3,
pp. 517–528, 2019.

[15] NYX simulation, https://amrex-astro.github.io/Nyx, online.
[16] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,

“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data. IEEE, 2018.

[17] J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, and P. Lindstrom, “Error
analysis of zfp compression for floating-point data,” SIAM Journal on
Scientific Computing, 02 2019.

[18] J. Zhang, X. Zhuo, A. Moon, H. Liu, and S. W. Son, “Efficient
encoding and reconstruction of HPC datasets for checkpoint/restart,” in
Proceedings of the 35th International Conference on Massive Storage
Systems and Technology (IEEE MSST19), 2019.

[19] X. Delaunay, A. Courtois, and F. Gouillon, “Evaluation of lossless and
lossy algorithms for the compression of scientific datasets in netcdf-
4 or hdf5 files,” Geoscientific Model Development, vol. 12, no. 9, pp.
4099–4113, 2019.

[20] C. S. Zender, “Bit grooming: statistically accurate precision-preserving
quantization with compression, evaluated in the netcdf operators (nco,
v4.4.8+),” Geoscientific Model Development, vol. 9, no. 9, pp. 3199–
3211, 2016.

[21] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[22] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Fixed-psnr lossy
compression for scientific data,” in 2018 IEEE International Conference
on Cluster Computing (CLUSTER), 2018, pp. 314–318.

[23] Zstd, https://github.com/facebook/zstd/releases, online.
[24] N. W. Scheffner, D. J. Mark, C. A. Blain, J. J. Westerink, and J. R. A.

Luettich, “Adcirc: An advanced three-dimensional circulation model for
shelves, coasts, and estuaries. report 5. a tropical storm database for
the east and gulf of mexico coasts of the united states,” DRP Technical
Report DRP-92-6, 1994.

[25] QMCPack, https://qmcpack.org/, online.
[26] Miranda, https://wci.llnl.gov/simulation/computer-codes/miranda.
[27] Hurricane ISABELA Simulation Datasets,

http://vis.computer.org/vis2004contest/data.html.
[28] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. White, “The evolution

of large-scale structure in a universe dominated by cold dark matter,”
The Astrophysical Journal, vol. 292, pp. 371–394, 1985.

[29] B. Friesen, A. Almgren, Z. Lukić, G. Weber, D. Morozov, V. Beckner,
and M. Day, “In situ and in-transit analysis of cosmological simulations,”
Computational Astrophysics and Cosmology, vol. 3, no. 1, pp. 1–18,
2016.

7

