
1

Optimizing Error-Bounded Lossy Compression
for Scientific Data with Diverse Constraints
Yuanjian Liu, Sheng Di∗, Senior Member, IEEE , Kai Zhao, Sian Jin, Cheng Wang, Kyle Chard,

Dingwen Tao, Ian Foster, Fellow, IEEE , Franck Cappello, Fellow, IEEE

Abstract—Vast volumes of data are produced by today’s scientific simulations and advanced instruments. These data cannot be
stored and transferred efficiently because of limited I/O bandwidth, network speed, and storage capacity. Error-bounded lossy
compression can be an effective method for addressing these issues: not only can it significantly reduce data size, but it can also
control the data distortion based on user-defined error bounds. In practice, many scientific applications have specific requirements or
constraints for lossy compression, in order to guarantee that the reconstructed data are valid for post hoc analysis. For example, some
datasets contain irrelevant data that should be isolated in particular and users often have intuition regarding value ranges, geospatial
regions, and other data subsets that are crucial for subsequent analysis. Existing state-of-the-art error-bounded lossy compressors,
however, do not consider these constraints during compression, resulting in inferior compression ratios with respect to user’s post hoc
analysis, due to the fact that the data itself provides little or no value for post hoc analysis. In this work we address this issue by
proposing an optimized framework that can preserve diverse constraints during the error-bounded lossy compression, e.g., cleaning
the irrelevant data, efficiently preserving different precision for multiple value intervals, and allowing users to set diverse precision over
both regular and irregular regions. We perform our evaluation on a supercomputer with up to 2,100 cores. Experiments with six
real-world applications show that our proposed diverse constraints based error-bounded lossy compressor can obtain a higher visual
quality or data fidelity on reconstructed data with the same or even higher compression ratios compared with the traditional
state-of-the-art compressor SZ. Our experiments also demonstrate very good scalability in compression performance compared with
the I/O throughput of the parallel file system.

Index Terms—Big Data, Error-Bounded Lossy Compression, Data Reduction, Large-Scale Scientific Simulation

F

1 INTRODUCTION

Modern scientific simulations can produce extraordinary
volumes of data. For example, climate and weather sim-
ulations [1] can produce terabytes of data in a matter of
seconds [2], and the Hardware/Hybrid Accelerated Cos-
mology (HACC) simulation code [3] can generate petabytes
of data from a single run. The resulting data must be stored
for subsequent use; however, the cost and availability of
storage often lead to difficult decisions regarding future
utility. Further, there is a growing need to transfer and
share simulation data over wide area networks (e.g., via
Globus [4]), which may have lower bandwidth.

Error-bounded lossy compressors [5], [6], [7], [8], [9],
[10], [11] are widely used to reduce scientific data vol-
umes while meeting user requirements for data fidelity.
For instance, the SZ [6], [12], ZFP [5], and MGARD [13]
compressors each allow users to request that the difference
between original and reconstructed data be bounded by

* Sheng Di (sdi@anl.gov) is the corresponding author.

• Yuanjian Liu and Kyle Chard are with the Department of Computer
Science at the University of Chicago, Chicago, IL 60601, USA.

• Sheng Di, Cheng Wang, and Franck Cappello are with the Mathematics
and Computer Science Division at Argonne National Laboratory, Lemont,
IL 60439, USA.

• Ian Foster is with both Argonne National Laboratory and the University
of Chicago, Chicago, IL 60601, USA.

• Kai Zhao is with the Department of Computer Science and Engineering
at the University of California, Riverside, Riverside, CA 92521, USA.

• Sian Jin and Dingwen Tao are with the School of EECS at Washington
State University, Pullman, WA 99164, USA.

a specified absolute error bound (i.e., a threshold) when
performing lossy compression. Climate research scientists
have verified that the reconstructed data generated by error-
bounded lossy compressors are acceptable for post hoc
analysis [14], [2], [15]. Similarly, adopting a customized
error-bounded lossy compressor has been shown to reduce
the memory capacity required for general quantum circuit
simulations [8].

Existing error-bounded lossy compressors have a signif-
icant limitation, however: none support preserving specific
constraints, such as isolating irrelevant values, preserving
value ranges, or preserving different precisions for differ-
ent value intervals in the dataset or different regions in
the space. For example, in environmental science, different
values in a dataset commonly have different significance
to post hoc analysis. Thus, users hope to set different pre-
cisions (or error bounds) based on various value intervals
in the dataset. A typical example is tracing a hurricane’s
moving trajectory over the sea: only the data points whose
water surface values are greater than a threshold (such
as 1 meter) are interesting to environment scientists. The
Nyx cosmological simulation [16] presents another good
example as scientists performing post hoc analysis focus on
a specific quantity of interest (e.g., dark matter halo cell
information). According to the dark matter halo analysis
algorithm, the construction of dark matter halos is deter-
mined primarily by the values of two fields (dark matter
density and baryon density) in a specific value interval of
[81,83]. Therefore, in order to preserve the features (such
as the count and location) of the dark matter halos, the

2

values in this interval should have higher precision than
the values in other intervals. Some other datasets such as
the Community Earth System Model (CESM) [1] map the
geolocations into the data location, and it is important to
choose certain regions for investigation. When studying
the impact of weather in the United States, for example,
scientists may care more (or only) about the areas within or
near U.S. boundaries.

In this paper we propose a novel compression method
based on the SZ error-bounded lossy compression frame-
work,1 which allows users to specify constraints, such
as setting different error bounds in various value inter-
vals or spatial regions, so that the reconstructed data can
meet users’ required quality better than traditional uni-
form error-bounded lossy compression can. In particular,
our constraint-based compression model addresses irrele-
vant data in scientific datasets and effectively preserves the
global value ranges, which are critical to obtaining a high
compression quality in some cases.

We summarize the key contributions as follows.

• We propose a constraint-based error-bounded lossy
compression model; to the best of our knowledge,
this is the first attempt to develop such a model.
The user-specified constraints include (A) isolating
irrelevant values, (B) preserving global value range,
(C) preserving multi-interval-based error bounds,
(D) preserving multiregion-based error bounds, and
(E) using a bitmap to mask complicated regions
and apply different error bounds on each region.
These constraints are critical to post hoc analysis of
different applications in practice.

• We develop a series of optimization strategies for
preserving constraints efficiently. Specifically, we
redesign the quantization stage in the SZ error-
bounded lossy compression framework.

• We perform a comprehensive evaluation using mul-
tiple real-world scientific datasets across different
domains. Experiments show that our solution can
respect users’ constraints, while maintaining a high
compression ratio. Specifically, our solution can ob-
tain better visual quality or data fidelity in the lossy-
reconstructed data for different applications, with
the same compression ratios compared with the sin-
gle error-bounded compressor. Our experiments also
demonstrate a good scalability in compression time
compared with the parallel file system’s I/O cost.

The rest of the paper is organized as follows. In Section 2
we discuss related work. In Section 3 we first introduce the
SZ compression model and then discuss the five scientific
constraints posed by scientists across different domains. In
Section 4 we formulate the research problem based on the
SZ error-bounded lossy compression model. In Section 5
we propose a battery of efficient algorithms to preserve the
user-required constraints and also optimize the compression
quality and performance for different cases. In Section 6 we
present our evaluation results. In Section 7 we summarize
our findings and conclude with a vision of future work.

1. We adopt the SZ compression framework because it provides
leading error-bounded lossy compression quality, as verified by several
studies of different scientific datasets [6], [12], [17], [18].

2 RELATED WORK

Data compression is used widely in scientific research, for
example to reduce data storage and transfer size and costs.
Data compressors are typically split into two classes: lossless
compression [19], [20], [21], [22] and lossy compression [6],
[12], [5], [23], [24]. The former introduces no data loss during
compression, but it suffers from very low compression ratios
(generally 1.1-2 [25], [26]). The latter can achieve very high
compression ratios (such as 100+) [6], [12], [5], [18], but
potential data loss may distort analysis results.

To address the concern about data loss, researchers have
studied error-bounded lossy compressors for scientific data,
which can be split into two major categories – prediction-
based compression model and transform-based compres-
sion model. SZ [6], [12], [18] is a typical prediction-based
lossy compression model, which is composed of four key
stages: data prediction, linear-scale quantization, Huffman
encoding and lossless compression. ZFP [5] is a typical
compressor designed based on the transform-based model,
which includes four key steps: splitting dataset into fixed-
size blocks, exponent alignment in each block, orthogonal
data transform for each block; and embedded encoding for
each block.

Existing error-bounded lossy compressors offer different
types of error bounds to address diverse user demands.
The most common error-bounding approach involves using
an absolute error bound, which ensures that the pointwise
difference between the original raw data and reconstructed
data is confined within a constant threshold. Many compres-
sors such as SZ [6], [12], [18], ZFP [5], [27], and MGARD [13]
support absolute error bounds. Other error-bounding ap-
proaches have been explored to adapt to diverse user re-
quirements. For instance, SZ supports pointwise relative
error bounds [28], [29]; and Digit Rounding [30], Bit Groom-
ing [24], zfp [5], and FPZIP [23] support a precision mode
that allows users to specify the number of bits to be trun-
cated in the end of the mantissa, in order to control the data
distortion at different levels.

To satisfy user demands on a specific quality of inter-
est, researchers have recently studied how to respect some
specific metrics. For instance, Tao et al. [31] developed a
formula that can link the target peak signal-to-noise ratio
(PSNR) metric to an absolute error bound setting in SZ such
that data can be compressed based on a user-specified PSNR
metric. MGARD [13] supports various norm error metrics
and linear quantities of interest in its multigrid compression
method. However, none of the existing error-bounded lossy
compressors allow users to set particular constraints in the
error-bounded compression and hence impose a significant
impediment on the practical use of such compressors. In
fact, users often have diverse precision demands for various
data value intervals or specific requirements on different
spatial regions, which are determined by their sophisticated
post hoc analysis purposes and quantities or features of
interest.

3 RESEARCH BACKGROUND

We describe the research background in this section, in-
cluding SZ compression model and diverse constraints in
scientific datasets.

3

3.1 SZ Compression Model

The error-bounded lossy compression model SZ is illus-
trated in Figure 1. As shown in the figure, the compres-
sion model is composed of four key stages: prediction,
quantization, Huffman encoding, and lossless compression.
Given a set of raw data, SZ scans the whole dataset (either
pointwise [6], [12] or blockwise [18]) to predict the data
values. In a 1D dataset, the prediction method is simply
a first-order Lorenzo predictor [12], which uses only the
preceding value to approximate the current data point. In
a 2D or 3D dataset, SZ adopts a hybrid data prediction
method combining the first-order Lorenzo predictor (using
three nearby values in the 2D Lorenzo and 7 nearby values
in the 3D Lorenzo) and a linear-regression-based predic-
tor [18]. Such a hybrid predictor can significantly improve
the data prediction accuracy, which in turn can substantially
increase the compression ratio, especially when the error
bound is relatively large. The second stage in SZ uses a
linear quantization method to convert the distance between
the predicted value and original value to an integer number
(called the quantization code or quantization number) for
each data point. A customized Huffman encoder is then ap-
plied to compress the integer quantization codes, followed
by a lossless dictionary coding (using Zstd [19] by default
in SZ).

Prediction Quantization Huffman
Encoding Compression

Predicted
 Value

 Data
Value

Encoded
 Value

Compressed
Value

Quantization

 Code

Stage I Stage 2
Lossless

Stage 3 Stage 4

Fig. 1. General procedure of constraint preserving error bounded lossy
compression: Constraint (A) is handled before the prediction step; con-
straint (B) is handled primarily in both the prediction and quantization
stage by replacing data points with Lorenzo-predicted values; con-
straints (C), (D), and (E) are addressed by designing a new quantization
method.

3.2 Diverse Constraints in Scientific Datasets

In this paper we propose a novel concept in the practical use
of error-bounded lossy compression—preserving diverse
constraints specified by users.

A constraint here is referred to as a particular condi-
tion that must be applied during the error bounded lossy
compression. We describe five types of constraints that are
commonly required in real-world science applications (see
Table 1)

Irrelevant (or missing) data. Scienfitic datasets are often
sparse, and missing data are often encoded in esoteric
manners. Specifically, we observe that some datasets (partic-
ularly those generated by climate and weather simulations)
often contain extremely large values (such as 1E35) that are
far from the normal value range. These values are used
to indicate “missing” values or background information
(such as coastline locations). Those data points need to be
recorded in the dataset for the purpose of post hoc anal-
ysis. However, these data affect data smoothness in space,
which may substantially reduce data transform efficiency

or prediction accuracy, significantly degrading the lossy
compression quality.

Global value range. In some scientific datasets values
outside a “normal” range may result in serious errors for
post hoc analysis. For instance, the temperature of liquid
water at one standard atmospheric pressure has a mean-
ingful value range, which is 0◦C ∼ 100◦C. Any values
outside this range would cause incorrect post hoc analysis.
For the existing error-bounded lossy compressors, however,
the reconstructed data could fall outside of the meaningful
value range. For example, if the error bound is 5◦C, some
of the decompressed data values may reach up to 105◦C or
down to -5◦C, which is undesirable for water temperature.

Interval-based error bound. In practice, post hoc analyses
often focus on specific value intervals within the whole
dataset. Thus, researchers may want to apply different
error bounds (or precisions) based on value intervals. For
instance, environmental scientists track the location of Hur-
ricane Katrina [33] by calculating the height of the wa-
ter surface (overly high water surface values indicate the
location of the hurricane at that moment). Accordingly,
the researchers care only about the data whose values are
greater than a threshold, such as 1 meter, in the simulation.
On the other hand, the decompressed data are supposed to
be confined within the original interval. In the Hurricane
Katrina simulation, for example, if the water surface thresh-
old is set to 1 meter, all the reconstructed data points whose
values are greater than 1 from the previously lower-than-1
raw values would be considered “false alarms,” which is
undesired by users.

Region-based error bound. Different regions in a scientific
dataset may have different importance according to its phys-
ical meaning. For example, CESM [1] records the climate
change globally, and its data indexes refer to geolocations.
Researchers making use of a specific scientific dataset gen-
erally understand which spatial regions need to be studied.
Thus, it is possible to set different error bounds across
different regions of the datasets so that specific regions of
interest can be kept at a high resolution to achieve necessary
data fidelity, while other regions can be less precise to obtain
a high compression ratio.

More complex error bounds. While the above constraints
cover most real-world error bound requirements, some ap-
plications have more complex and fine-grained demands.
For instance, geolocation-related datasets such as those in
CESM [1] may have sophisticated contours around lands
and oceans, and scientists may wish to have higher preci-
sion in land areas. In this case we allow users to mark a
customized 2D or 3D area and use a bitmap array to specify
different error bounds for every data point. We can also
use the bitmap to automate some region selection for users
based on the data patterns. By applying advanced bitmap
generation algorithm, our solution can preserve customized
diverse precisions for a dataset.

4 PROBLEM FORMULATION

In this section we formulate our diverse constraint error-
bounded lossy compression problem.

Given a scientific dataset D composed of N floating-
point values (either single precision or double precision), the

4

TABLE 1
Examples of user-required constraints applied to scientific simulation datasets

No. User-Required Constraints Examples Science Domains
(A) Isolating irrelevant value Hurricane Isabel [32], Katrina [33] Climate, Weather, etc.
(B) Preserving global value range CESM [1] Climate, etc.
(C) Preserving value-interval-based error bounds Katrina [33], NYX Weather, Cosmology, etc.
(D) Preserving multiregion-based error bounds CESM [1] Weather, Seismic imaging, etc.
(E) Preserving irregularly shaped regions QMCPACK, Miranda, CESM [1] Hydrodynamics, Weather, etc.

objective is to develop an error-bounded lossy compressor
that can respect a set of user-defined constraints such as
preserving global value range or preserving multiple error
bounds based on value intervals or different regions in the
dataset.

Three assessment metrics are considered. The first two
are compression speed sc and decompression speed sd.
They are usually measured in megabytes per second: in
other words, the size (in MB) of the original dataset pro-
cessed (either compressed or decompressed) per time unit.
The third metric is compression ratio (denoted by ρ), which
is defined as follows:

ρ = N ·sizeof(dataType)
Sizecompression

, (1)

where dataType can be either float or double and
Sizecompression is the total size after compression.

Our goal then can be formulated as Formula (2).

Maximize ρ
subject to user-required constraint

(2)

The user-required constraint refers to additional require-
ments applied to the lossy compression beyond the tra-
ditional error-bounding constraint. We formulate the five
constraints listed in Table 1 as follows:

CONSTRAINT (A): Preserve and isolate di /∈ [Rmin, Rmax]
(3)

CONSTRAINT (B): Preserve

{
max(d̂i) = high(r(D))

min(d̂i) = low(r(D))
(4)

CONSTRAINT (C): |di − d̂i| ≤ e(di) (5)

CONSTRAINT (D, E): |di − d̂i| ≤ e(LOC(di)), (6)

where di∈D denotes the ith data point in the original
dataset D, d̂i is its corresponding decompressed value,
low(r(D)) and high(r(D)) are the boundaries of the dataset
D’s value range r(D), e(di) denotes the user-required error
bound in terms of data point di’s value (i.e., user-specified
error bound in terms of the value interval that covers di),
LOC(di) refers to the spatial location of the data point di,
and e(LOC(di)) denotes the user-specified error bound for
the specific region covering LOC(di). Constraints D and E
have identical formulas: the key difference is that E allows
irregular shapes, whereas D focuses on a regular shape
defined by a rectangular box or cube. We summarize all the
notation in Table Table 2.

We give an example to further illustrate how the research
problem is formulated in our work. As described above,
researchers using the Hurricane Katrina dataset to track the
path of the hurricane are concerned only with water surface
values above 1m. Based on Formula (2) and Formula (5), the

TABLE 2
Key Notation

Notation Description
di original data value at position i
pi predicted value of di
d̂i reconstructed data value after decompression
r(x) value interval of data point x (di)
e(x) specified error bound based on a value interval (x=r(di))
e(LOC(x)) specified error bound based on the location (x = di)
l(x) length of some value range (x = r(di))
low(r(x)) lower boundary of value interval r(x)
high(r(x)) higher boundary of value interval r(x)
q quantization index (i.e., quantization code)
qs shifted quantization number

target is to maximize the compression ratio while ensuring
that the relatively higher values have lower error bound
(e.g., if di ≥ 1, then e(di) = 0.01; otherwise, e(di)=0.1).
Another example is the Nyx cosmological simulation with
a specific quantity of interest, namely, dark matter halo
information. According to the Nyx analysis code [16], the
dark matter halo cells are computed based on a threshold
located in the interval of [80,85], which means that for any
data point di in [80,85], their error bounds e(di) should be
lower than e(dj), where dj refers to the data points that fall
outside of the critical interval [80,85]. Such a multi-interval-
based error bound setting can eliminate the distortion of
halo cells calculated by the reconstructed data with the
same compression ratios. The details will be presented in
Section 6.

5 ERROR-BOUNDED LOSSY COMPRESSION
FRAMEWORK WITH DIVERSE CONSTRAINTS

We develop a constraint-based error-bounded lossy com-
pression framework based on the SZ compression
model [12]. In the following text we describe our design
and how to optimize the performance and quality on this
foundation.

5.1 Handling Irrelevant Data
In order to handle the irrelevant values correctly and effi-
ciently, the first three stages in SZ (i.e., prediction, quantiza-
tion, and Huffman encoding) all need to be modified. The
details are as follows.

In stage 1 (data prediction), the key problem is to fill
the missing values for the irrelevant data points such that
the smoothness of the data will not be destroyed by irrel-
evant values. This strategy can maintain a high prediction
accuracy at each data point throughout the whole dataset.
To this end, we use the Lorenzo predicted values [12] to
replace irrelevant values. More specifically, for a 1D dataset,
the irrelevant data will be replaced by the values of their

5

preceding data points (di ← di−1); for a 2D dataset, di,j
← di,j−1 + di−1,j − di−1,j−1; and for a 3D dataset, di,j,k
← di−1,j,k + di,j−1,k + di,j,k−1 − di−1,j−1,k − di−1,j,k−1 −
di,j−1,k−1 + di−1,j−1,k−1. Figure 2 illustrates how irrelevant
values are modified in the prediction stage for a 2D dataset.
As shown in the figure, the irrelevant value is 1E35. When
encountering an irrelevant data point during compression,
the values will be estimated based on the Lorenzo predictor:
for example, 1.29← 1.25+1.27−1.23; 1.33← 1.31+1.29−1.27).

1.23 1.25

1.27
1E35

1E35

1.29

1.331.31
1E35

Normal data points

Normal data points

used to fix the

missing data points

Irrelevant data

points

Fig. 2. Illustration of how irrelevant data values are cleared in a 2D
dataset.

After modifying the “irrelevant” data points, we propose
two strategies to preserve the irrelevant values during the
second stage of the compression pipeline.

• Strategy A: Since the irrelevant value is often a single
floating-point number (such as 1E35), we use a 1-bit
array to mark whether this is an irrelevant value for
each data point (1 indicates irrelevant value, and 0
indicates normal data).

• Strategy B: Use one quantization bin (such as bin
#1) from the quantization range to mark whether
the data point is an irrelevant value. Thus, there
are three types of quantization bins in this case:
(1) quantization bin #0 records the unpredicted data
value as usual [12], (2) quantization bin #1 marks the
irrelevant data, and (3) the remaining quantization
bins are used to record the distance between the
predicted value and original value.

Each of the two strategies has its own advantages and
disadvantages. Strategy A has no impact on the distribution
of quantization codes, so it can maintain high Huffman-
encoding efficiency on the quantization codes; but it suffers
from an overhead of storing the extra bit array. Strategy
B does not have such an overhead; but it may affect the
distribution of quantization codes to a certain extent, which
will inevitably lower the effectiveness of compressing the
quantization codes by Huffman encoder.

In the third stage (Huffman encoding), if the solution
adopts strategy A, we compress the 1-bit array using Huff-
man encoding. This compression may significantly lower
the overhead because irrelevant data points are generally
a small portion of the whole dataset and therefore the 1-
bit array is composed mainly of 0s (to be demonstrated in
Section 6.1).

5.2 Preserving Global Value Range
The simplest, yet suitably efficient, strategy for preserving
the global value range is to include the original value range
information as metadata in the compressed data. During
decompression, when a reconstructed data value outside the

“original value range” is found, the algorithm will replace
it with either the minimum value or maximum value of
the value range. This strategy introduces little computation
overhead in the compression stage because we need only to
scan the dataset to find the maximum and minimum values,
a process we refer to as “preprocessing” in our evaluation.
During decompression, a small computation overhead (gen-
erally ∼10% in our experiments) may be introduced by this
strategy, because the algorithm needs to check each data
point to determine whether the reconstructed value falls
outside of the original dataset’s value range. If so, it would
be substituted by either the maximum or minimum value.

5.3 Preserving Multi-Interval Error Bounds

We define an array of triplets, each containing the low, high,
and error bound. Figure 3 illustrates our fundamental idea us-
ing a simplified diagram with relatively large error bounds.
In this example the user specifies different error bounds for
four value intervals: [−100, 0), [0, 14), [14, 38), and [38, 238);
the error bounds are 10, 1, 3, and 50, respectively. We then
apply different quantization bins (whose length is twice
the error bound) in different intervals. As illustrated in
the figure, each square denotes a quantization bin in its
corresponding value interval. Our algorithm calculates the
total number of varied-length quantization bins involved
between the predicted value and the raw value during the
compression and identifies the quantization bin based on
the error bounds during the decompression.

D
a
ta

 V
a
lu

e

…
…

2e=2

2e=20

2e=6

2e=100

0

-20

-40

-60

-80

-100

10

8

6

4

2

0

14

12

38

32

26

20

14

238

138

38

Range 0 Range 1 Range 2 Range 3

Fig. 3. Multi-interval error bound model. This example shows a few
exaggerated error bounds in each range for simplicity of description:
each rectangle represents twice the error bound in that range, and the
ranges are tightly connected. The error bound will usually be smaller in
practice, and each range may contain hundreds or thousands of error
bounds.

Before describing our solution in detail, we review the
notation. Let di denote the original data value at position
i. Let pi denote the predicted value for di. We use R to
denote the radius of the quantization bin (for instance, if
there are 65.536 quantization bins, the radius R is equal to
32 768). Let d̂i denote the decompressed data value. Let r(x)
be a function that returns a value interval index based on a
given data value x=di. Let e(x) be a function that returns the
user-specified error bound based on a given value interval
(x=r(di)). Let l(x) denote the length of some value interval

6

based on the interval index (x = r(di)). Let low(r(x)) and
high(r(x)) denote the low boundary and high boundary
of the value interval r(x), respectively. Let q denote the
quantization code, and let qs denote the shifted quantization
number.2 We summarize the notation in Table 2 in order to
help understand the following text.

As illustrated in Figure 3, we design a multi-interval
quantization method that calculates the total number of
quantization bin indices based on the varied-length quan-
tization bins, followed by other compression techniques in-
cluding Huffman encoding and dictionary encoding (Zstd).
Algorithm 1 presents the pseudocode of the multi-interval
quantization in the compression stage.

Algorithm 1 MULTI-INTERVAL QUANTIZATION IN COM-
PRESSION STAGE
Input: user-specified intervals and error bounds ε
Output: compressed data stream in form of bytes

1: for each data point di do
2: Use the composed prediction that combines Lorenzo predictor

and linear regression predictor to obtain a prediction value pi.
3: Ip ← r(pi). /*Obtain interval index of pi*/
4: Id ← r(di). /*Obtain interval index of di*/
5: if Id == Ip then
6: q←round(

(di−pi)
2e(Id)

)./*Quantized distance between di & pi.*/
7: else if Id > Ip then
8: t =

∑Id−1
i=Ip+1

l(i)
2e(i)

. /*Count bins for middle intervals.*/

9: tp = round(
high(Ip)−pi

2e(Ip)
). /*Get quantized distance for Ip.*/

10: td = round(
di−low(Id)

2e(Id)
). /*Get quantized distance for Id.*/

11: q = t + tp + td. /*Get the logic quantization code.*/
12: else
13: t =

∑Ip−1

i=Id+1
l(i)
2e(i)

. /*Count bins for middle intervals.*/

14: tp = round(
high(Id)−d

2e(Id)
). /*Get quantized distance for Id.*/

15: td = round(
pi−low(Ip)

2e(Ip)
). /*Get quantized distance for Ip.*/

16: q = t + tp + td. /*Get the logic quantization code.*/
17: end if
18: qs ← q + R. /*Shift quantization code.*/
19: end for

For each data point, we must deal with three relation-
ships between the original raw value di and its predicted
value pi: (1) r(di) = r(pi): they fall in the same interval; (2)
r(di) < r(pi): the predicted data are in some range ahead of
the original data; and (3) r(di) > r(pi): the predicted data
are in some range before the original data.
Situation 1 (lines 5∼6): If the original raw value di and
the predicted value pi fall in the same interval (i.e., r(di) =
r(pi)), the quantization problem falls back to the traditional
linear-scale quantization [12]. Specifically, we can use the
following formulas to compute the logic quantization code
and decompressed data.

q = round(di−pi

2e(r(di))
) (7)

d̂i = pi + 2e(r(di)) · q (8)

We use an example to illustrate how the linear-scale quan-
tization works. Suppose the error bound (i.e., e(r(di))) is
20 and we have di=−74, pi=−95. Then di − pi = 21 and
q = round(21/40) = 1. The decompressed value d̂i is −75,
whose distance to the raw value is less than the error bound.

2. Since the C array has no negative index in an array, the logic quan-
tization bins [-R,R] need to be shifted to [0, 2R] in our implementation.

Situations 2 and 3 (lines 7∼17): These correspond to the
situation where the raw value di and its predicted value pi
fall in different value intervals (i.e., r(di) 6= r(pi)). In the
following text, we describe the situation with r(di) > r(pi)
(i.e., lines 7∼11 shown in the algorithm); the other situation
is similar.

The fundamental idea in handling this situation is to
adjust the quantization policy to use various bin lengths or
sizes in different value intervals. Specifically, we count the
quantized distance (i.e., the number of quantization bins)
from the predicted value to the original raw value. When-
ever the counter crosses a different interval, we continue to
add the quantization bins from the boundary of the new
interval. As illustrated in Figure 3, suppose the predicted
value is located at -10 and the original value is 100. Then the
calculation of the quantization bins involves all the value
intervals, and the quantization code is 1+7+4+1=13. The
decompressed data would be (38+238)/2=138. Obviously,
the decompressed data value is determined mainly by the
last value interval and its quantization bin size. The formula
for reconstructing the decompressed value is given below
(we assume the raw data valuw is greater than the predicted
value, without loss of generality):

qt = round(di−low(r(di))−e(r(di))
2e(r(di))

) (9)

d̂i = low(r(di)) + e(r(di)) + 2e(r(di)) · qt. (10)

Now we describe the decompression in Algorithm 2.
The algorithm proceeds by executing similar operations to
the compression process but in reverse order to obtain the
decompressed data from a predicted data value and the cor-
responding quantization bins. As shown in the pseudocode,
we first calculate the number of quantization bins for each
value interval (line 3∼5). We then decompress each data
point based on the multi-interval quantization (lines 6∼34).
If the raw data value is lower than the predicted value (i.e.,
qj < 0), the code will scan all the involved value ranges
downward (lines 10∼29). Lines 25∼29 refer to the situation
where the predicted value and original raw data value fall in
the same interval. Lines 13∼23 deal with the other situation
where the two data values fall in different intervals.

Note that we need to deal with the edge situation care-
fully. For instance, when the original data are near the high
or low bound of an interval, the quantization value in this
final interval might be equal to quantRange[i], causing the
decompressed value to be in the next interval unexpectedly.
In this case we shift the quantization by 1 in the compression
stage to ensure that the decompressed data and original data
are in the same interval.

5.4 Preserving Multiregion Error Bounds

Sometimes it is not apparent how to set different error
bounds for different value intervals in a dataset; however,
one usually knows which regions are likely to be interesting
and thus require higher precision than others. For instance,
in the CESM [1] dataset, the data indexes correspond to
the geolocations, and some regions are more important
than others for particular analyses (e.g., oceans, continents).
Figure 4 illustrates our approach enabling users to mark
interesting regions that we then use to apply a tighter error

7

Algorithm 2 MULTI-INTERVAL QUANTIZATION IN DECOM-
PRESSION
Input: compressed data stream
Output: decompressed data stream in the form of bytes

1: Read value intervals and error bounds in the header and initialize
multi-interval quantizer.

2: Read the quantization bins and unpredictable data.
3: for each interval index Ii do
4: l̂i = l(Ii)

2e(Ii)
. /*Calculate # quantization bins for each interval*/

5: end for
6: for each decompressed data position j do
7: Use the composed prediction that combines Lorenzo predictor

and linear regression predictor to obtain a prediction value pj .
8: qj = qs − R. /*Get the logic quantization code qj*/.
9: Ip ← r(pj). /*Obtain range index of pj*/

10: if qj < 0 then
11: ∆ ← pj − low(Ip) /*Compute pj ’s distance to the low

boundary*/
12: ∆̂← round(∆/2(e(Ip))) /*Compute quantized distance*/
13: if qj + ∆̂ < 0 then
14: for i from Ip − 1 to 1 do
15: if qj + l̂i ≥ 0 then
16: d̂j←high(i)−e(i)+(qj+1)·(2·e(i)). /*Get

decompressed data*/
17: if d̂j < low(i) then
18: d̂j ← low(i)+e(i). /*Correct decompressed data*/
19: end if
20: else
21: qj ← qj + l̂i. /*Add quantization length for further

search*/
22: end if
23: end for
24: else
25: d̂j ← pj +qj ·2 ·(e(Ip)). /*Compute decompressed value*/

26: if d̂j < low(Ip) then
27: d̂j ← low(Ip) + e(Ip). /*Perform correction to avoid

undesired boundary-crossing*/
28: end if
29: end if
30: else if qj == 0 then
31: d̂j ← pj . /*The prediction is accurate, directly use the pre-

dicted value*/
32: else if qj > 0 then
33: Calculate the decompressed data using similar methods.

/*For brevity we do not include details here. It is similar to
the case when qj < 0, with just a few changes to the low and
high bounds and some calculation differences.*/

34: end if
35: end for

bound on each region according to the requirement and
preknowledge of the data distribution.

To reduce the overhead in (de)compression time, we do
not assign a region to each data point; instead, we consider
each intrablock of data in the same region. To make the
algorithm simpler, we adopt the intrablock of size 6×6×6
for 3D data, which is consistent with SZ’s linear regression
prediction block size [18]. The undesired side-effect of this
method is that the user-customized region (a regular box)
may cut through some intrablocks. Since the data have to
be compressed/decompressed in the unit of blocks (e.g.,
6×6×6 for 3D data), some storage overhead occurs at the
edge of the customized region. We consider this storage
overhead acceptable because the region of interest is rela-
tively large in practice (at a scale of several thousands) while
the block size is far smaller (such as 6×6×6). Keep in mind
that the purpose of proposing this region-based algorithm
is to reduce the compressed data size while preserving

... 58 59 60 61 71 72 73 ...
1D

eb=0.01 eb=0.001

2D

... 58 59 60 61 71 72 73 ...

232

231

233

234

235

.

.

.

.

.

.

eb=0.01

eb=0.05

3D

... 58 59 60 61 71 72 73 ...

232

231

233

234

235

.

.

.

.

.

.

eb=0.01

Fig. 4. Constraint(D) region selection for 1D, 2D, and 3D data: In 3D
cases, each region can be specified with seven parameters: the starting
positions (3 parameters), the length of each direction (3 parameters),
and the error bound (1 parameter).

precision for post hoc analysis.
The whole process can be done in the quantization stage

if the predictor is fixed, since the varied error bounds will
take effect only when calculating the quantization code.
However, when we compose the linear regression predictor
and Lorenzo predictor together, the data sampling process
will need a correct error bound to select an optimal predictor
for the current block. The varying error bounds can cause
the predictor selection to yield a bad result. This challenge
exists in all kinds of blockwise compression where predic-
tors may change according to the error bound for each block.
We will describe the solution in detail in Section 5.6.

5.5 Preserving Irregular Regions by Bitmap

To satisfy complex, customized regions of error bounds
(rather than just rectangles or cubes), we introduce a bitmap
error bound array (as shown in Figure 5). It contains a
set of integer values that indicate different data distortion
levels, each of which corresponds to a specific error bound
value. Such a method allows users to specify an error
bound for each data point. However, it is not realistic to
manually assign each data point an error bound, since
there are usually millions of data points. Instead, users can
use third-party software to mark a customized shape in
a picture or apply computer vision techniques to obtain
contours that distinguish regions (e.g., land and ocean).
Such a customized-marking option is more accurate and
flexible in practice especially in geolocation-related research
(to be demonstrated later).

Although using bitmaps supports the most complex
error bound settings—allowing each data point to have its
own error bounds—cases rarely require many different error

8

...
30

...

.

.

.

.

.

.

31 32 33 34 35 36

80

81

82

eb=0.2

eb=0.1eb=0.1

eb=0.05

eb=0.01
0 1 0 1 0 0 3

Fig. 5. Illustration of bitmap error bound setting: Use an index to repre-
sent the error bound for each data point, and use a separate array to
store all possible error bounds.

bounds to coexist in one dataset in practice. Most require-
ments are limited to a few different error bounds in total,
because of coherence of data in space; for example, “higher
precision may be required near the hurricane center” or
“land areas need higher precisions than ocean areas.” There-
fore, we use one byte to represent all different types of error
bounds. That is, we use a byte array to store the index of
error bound for each data point and apply Huffman coding
and lossless compression to compress the bitmap array if
needed. In the extreme case, the original single error bound
would be equivalent to an all-zero bitmap, which would
bring almost zero overhead after proper compression. The
overhead of using a bitmap array will be presented in
Section 6.

The bitmap solution solves a complicated error bound
requirement (actually, all possible error bound require-
ments) and presents an opportunity for automated error
bound selection, which may relieve scientists of having to
configure advanced bitmap generation algorithms. This so-
lution can also have additional global advantages compared
with the region-based method when different error bounds
are distributed evenly across the dataset. By setting a fixed
proportion of data points with some certain error bounds,
we can achieve higher compression ratio, lower root mean
squared error, and comparable visual quality (the result will
be presented in Section 6).

5.6 Artifact Removal in Multiprecision Compression
The above three multiprecision compression methods may
cause undesired artifacts because of their blockwise design.
As demonstrated in Figure 6, the two-precision setting
(eb1 = 20 at ocean and eb2 = 10 at land) has worse
visual quality in the land area (with prominent stripe-
pattern artifacts) than does a uniform (eb = 20) setting.
The root cause is due to the was SZ compresses the data.
Specifically, SZ splits each dataset into many small blocks
(e.g., 6×6×6 for 3D) and selects the better predictor between
Lorenzo and linear regression based on the sampled data
points. In general, the Lorenzo predictor may work well
when the error bound is relatively low, however it is not
as effective as linear regression when the error bound is
high [18]. Therefore, the Lorenzo predictor would tend to
be selected in each block at relatively low error bounds.
Based on our observation, the artifacts shown in Figure 6 (A)
are typical and are common to the Lorenzo predictor when
the error bound is high. This can be verified in Figure 6
(C), in which the corresponding land area is using a linear

(A) Bitmap with 2 precisions:
Land(eb=10), Ocean(eb=20);

CR=354, RMSE=3.61, PSNR=39.94

(B) Bitmap setting 2 precisions to
be the same (eb=20); CR=664,

RMSE=4.31; PSNR=38.40

(D) The original uncompressed
data

(C) Bitmap setting same with(A)
but change block size to 64;

CR=268, RMSE=5.29, PSNR=36.6

Fig. 6. Multiprecision compression problem: In (A), although the RMSE
and PSNR behave normally, the continuity of the visualization seems to
be broken compared with a lower-precision setting in (B). The block size
for the 2D dataset is 32 in SZ3; if we change it to 64, we can obtain the
visualization shown in (C).

regression predictor instead of Lorenzo predictor because of
increased blocksize (from 32 to 64). Although increasing the
blocksize can mitigate the artifact issue to a certain extent,
the linear regression predictor may have an oversmooth
visualization issue in the corresponding blocks when the
error bound is overly large, which may cause undesired
block pattern artifacts, as shown in Figures 6 (B) and (C).
Moreover, the compression ratio is also degraded (compare
Figure 6 (A) vs. (C)), which is undesired.

To overcome the artifact issue, we apply a new
predictor—called interpolation—that works well in situa-
tions with high user-required error bounds. Specifically, in-
stead of handling the data block by block, the interpolation-
based method works level by level and handles every di-
mension in a unified pattern. This interpolation-based pre-
dictor may have much higher prediction accuracy than the
linear regression predictor especially at high error bounds.
Details about this interpolation-based compression method
can be found in our prior work [34]. In this work we com-
bine our multiprecision design for the linear quantization
stage with the interpolation-based predictor, which can thus
resolve the artifact issue. We evaluate this method in the
following section.

5.7 Summary of Proposed Methods and Their Potential
Use Cases

In this section, we proposed five constraints along with three
multiprecision compression techniques. We will summarize
their characteristics and potential use cases below.

9

TABLE 3
Summary of The Proposed Methods

Constraint Features Pros Cons
Multi-
interval

Allow different
error bound set-
tings for differ-
ent value inter-
vals

Obtain higher
precision for
interesting
ranges without
decreasing
compression
ratio much

When setting
many ranges, the
data near each
range boundary
may be distorted
more, especially
if the error bound
is large

Multiregion Allow different
error bound set-
tings for multi-
ple regular re-
gions

Require quite
minimum
metadata to
represent each
region

Cannot represent
complicated
boundary; Only
rectangular
regions can be
represented

Irregular
Region

Allow fully cus-
tomizable error
bound settings
for each data
point

Represent
all kinds of
regions, fully
customizable

Require a bitmap
that is of the
same dimensions
as the original
data, extra space
cost

Irrelevant data will almost always need to be cleaned
with some method when existing. Global range should
also often be respected because otherwise certain post-
hoc analysis including color heatmap will render visually
different results compared to the original data. Therefore,
we consider these two constraints basic requirements and
universally applicable for many datasets.

As shown in TABLE 3, the three multiprecision compres-
sion methods allow users to set different error bounds for
different parts of data, but they have varied characteristics.
In summary, the multi-interval method is suitable when
value ranges have varied importance to users; the multi-
region method targets at those scenarios where interesting
data are in rectangular regions; the irregular region method
is useful in geographical data with complicated boundaries.

6 EXPERIMENTAL EVALUATION

In this section we use multiple real-world simulations to
evaluate our multiprecision compression methods, and we
compare the compression quality and performance with the
global constant error-bounded lossy compressor SZ, which
has been verified as one of the best error-bounded lossy
compressors in most cases.

We evaluate our approaches on datasets generated by
seven scientific applications: QMCPACK [35], RTM [36],
Miranda [37], CESM [1], Nyx [16], Hurricane Isabel [32],
and Hurricane Katrina [33], as presented in Table 4.

All time measurements are performed on the Argonne
Bebop Machine, which is a HPC cluster managed by Lab-
oratory Computing Resource Center (LCRC) at Argonne
National Laboratory. It is equipped with 1200+ broadwall
nodes (Intel Xeon E5-2696v4), each having 36 cores with a
total of 128 GB DDR4 memory.

The two quantities we used to measure the data quality
are RMSE and PSNR, and we will briefly introduce their
meaning below. The root-mean-square error (RMSE) is a
frequently used measure of the differences between values.
We calculate the mean error between the decompressed data
values and the original values to understand how much
error the compression algorithm brings into the data. The
term peak signal-to-noise ratio (PSNR) is an expression for

TABLE 4
Basic dataset information

Dataset # Fields Dimensions Science
QMCPACK 1 33120×69×69 electronic struc-

ture of atoms,
molecules, and
solids

RTM 1 449×449×235 Electronic
Miranda 7 256×384×384 hydrodynamics

code for large
turbulence
simulations

CESM 79 1800×3600 Climate
Nyx 6 512×512×512 Cosmology

Hurricane Isabel 13 100×500×500 Weather
Hurricane Katrina 1 162×417642 Weather

the ratio between the maximum possible value (power) of
a signal and the power of distorting noise. PSNR will not
be severely affected by the data ranges, and we can have a
universal understanding of how good the data is.

6.1 Preserving Irrelevant Data (constraint A) and
Global Value Range (constraint B)

The Hurricane Isabel dataset contains irrelevant data values
marked as 1E35, which is well outside the normal value
range. Table 5 shows the value range for five of 13 fields
in the dataset which contain irrelevant (or missing) data
points. The reason for the missing values is that the data
simulates an actual event (a hurricane) and, in the loca-
tions where there is ground, no meaningful wind speed or
pressure is recorded. More information about the dataset is
available on the website.3

TABLE 5
The 5 fields tested in the hurricane dataset

Field Description Value Range
P Pressure (weight of atmosphere

above a grid point)
-5471.8579/3225.4257

TC Temperature (Celsius) -83.00402/31.51576
U X wind speed (positive means

winds from west to east)
-79.47297/85.17703

V Y wind speed (positive means
winds from south to north)

-76.03391/82.95293

W Z wind speed (positive means
upward wind)

-9.06026/28.61434

Figure 7 shows the distribution of data points in the
Hurricane Isabel dataset. Because the actual value of the
irrelevant data is far too large to be put in the same figure
with normal data, we use a made-up value that is outside
the range of each field to represent the irrelevant value. We
can see that every field contains a non-negligible amount of
irrelevant data, although not as many as normal data points.
While the amount of irrelevant data is small, such data
may severely harm the overall compression ratio because
they are mixed among normal data points, destroying the
continuity of normal data. We verify this statement by
sampling a random continuous portion of the temperature
field, as shown in Figure 8.

Figure 8 clearly shows that irrelevant data are dis-
tributed among normal data, destroying the smoothness of
the data space. Obviously, if we predict a normal data point

3. http://vis.computer.org/vis2004contest/data.html

10

Z Wind Speed

Y Wind SpeedX Wind Speed

Pressure Temperature

Irrelevant
Data Irrelevant

Data

Irrelevant
Data

Irrelevant
Data

Irrelevant
Data

Normal data

Normal data

Normal data Normal data

Normal data

Fig. 7. Data distribution of the five fields in the hurricane dataset. The
irrelevant data value is 1E35. To visualize it in the distribution figure, we
modify the big value to a made-up outside value that is not in the normal
data range.

Clear Irrelevant Data with Lorenzo Predictor

Irrelevant Data

Normal Data

Fig. 8. Temperature data points with (left) and without (right) irrelevant
data. We show only a sample of 10,000 points (between index 50,000
and 60,000 in the original dataset). We observe the data points in the
given index range and can see that the irrelevant data is mixed among
the normal data points, harming data continuity; after clearing them with
the Lorenzo predictor, the separating effect disappears.

using the irrelevant data value, the prediction cannot be
precise. As lossy compressor designers, we want to preserve
irrelevant data values while mitigating their influence on the
compression ratio. Note that even though they appear to
be irrelevant for compression, they carry potentially useful
information—in this case, they indicate ground locations.

In Figure 9, we investigate five different ways of han-
dling irrelevant data. Time is measured on Bebop. The five
strategies are: Ignore treats all irrelevant data as normal
data; Zero replaces all irrelevant data by 0 for simplicity;
Clear replaces all irrelevant data using the Lorenzo predictor
based on their nearby values (our solution); Quant and
Bitmap indicate the storage algorithm: Quant refers to using
one additional quantization bin to mark irrelevant data, and

(A) Compression Time Comparison of Irrelevant Data
Handling Method

(B) Compression Ratio Comparison of Irrelevant Data
Handling Method

Fig. 9. Performance of irrelevant data-handling methods: all methods
slightly improve the compression ratio with a cost of longer compression
time and decompression time.

Bitmap indicates that we use a bit array containing 1 and 0
to indicate whether each data point is an irrelevant value or
not. Figure 9(A) shows that handling the irrelevant data may
double the compression and decompression time. The over-
head is due primarily to additional traversing of the whole
dataset to find, clean, and recover irrelevant data. Moreover,
constructing additional Huffman trees for irrelevant data
will add additional time to the compression and decom-
pression. Figure 9(B) shows that handling irrelevant data is
generally better than ignoring them; however, it is difficult
to determine whether it is better to clear them with the
Lorenzo predictor or simply convert them to 0. Moreover,
the simple bitmap method and quantization method exhibit
similar performance. The likely reason is that irrelevant data
are only a very small portion of the entire data and thus
the methods are unable to demonstrate a huge difference in
terms of the overall compression ratio. We conclude that in
this scenario the quantization strategy slightly outperforms
use of a bitmap.

The global range constraint is the easiest one to deal
with, which requires only a scan in the preprocessing stage
to obtain the max and min value. After the decompression,
an additional traverse will be sufficient to pull back those
few points whose values are beyond the min or max value.
The time overhead is nearly negligible, as indicated in the
gray bar in Figure 9 (A).

11

A)Global Range; CR=210; [-17, 17]
eb=0.4; RMSE[-8,-5]=0.233,

PSNR=43.04

(B)Multi-Ranges; CR=210; [-17, -8)
eb=1;[-8, -5) eb=0.15; [-5, 17) eb=1;

RMSE[-8,-5]=0.086, PSNR=51.35

Artifacts

Fewer Artifacts

(D)Data Distribution

Interesting
Range

Although the
majority data

gather around 0,
the interesting
data are sparse

Higher Precision
in this range

(B) Original Data

Fig. 10. QMCPACK data: (A) The basic method is setting one error
bound for the global range. We can see obvious artifacts in the blue
area. (B) Applying our multi-interval algorithm, we focus on the inter-
esting range [-8,-5) and give it a tighter error bound 0.15 while leaving
other ranges a higher error bound 1. We can see fewer artifacts, while
the compression ratio is kept the same as the global range method.
Compared with the original data shown in (C), we can see that the data
in the interesting range have better visualization results.

6.2 Multi-interval Error-Bounded Compression (Con-
straint C) Based on Visual Quality

Figures 10 and 11 show the substantial advantage of our
multi-interval error bound-based compression over the tra-
ditional constant error-bounded compression, using two
datasets (QMCPACK and Miranda). Specifically, the multi-
interval-based compression preserves higher visual quality
for the value intervals of interest, while achieving the same
or even higher overall compression ratios by lowering pre-
cision on insignificant value intervals. For instance, in the
QMCPACK dataset, over 90% of the data points are located
around 0, but they are smooth and easy to be predicted
by neighboring data points; however, the data points with
values in the interval of [−8,−5] are the sparse interesting
values that are harder to be predicted accurately. That is,
they are more important to preserve the overall visual
quality because the distortion of their values is easier to
observe in the visualization image.

Our method grants a tighter error bound and thus a
higher precision in the more important value intervals,
while allowing more distortion in insignificant value ranges,
such that the overall compression ratio is not degraded.
Detailed evaluation results are shown in Table 6 and Table 7.
Given similar compression ratios, our method can achieve
lower RMSE and higher PSNR in the critical value interval.

TABLE 6
QMCPACK RMSE & PSNR Comparison

Method Range eb RMSE PSNR
[-17, -8] 0.232 43.067

Global Range [-8, -5] 0.4 0.233 43.041
CR=210 [-5, 17] 0.051 56.159

[-17, -8] 1.0 0.538 35.747
Multi-Intervals [-8, -5] 0.15 0.086 51.623
CR=210 [-5, 17] 1.0 0.089 51.354

TABLE 7
Miranda density RMSE & PSNR Comparison

Method Range eb RMSE PSNR
[0.5, 1.4] 0.012 44.804

Global Range [1.4, 2] 0.07 0.036 34.801
CR=206 [2, 3.5] 0.015 42.379

[0.5, 1.4] 0.1 0.013 43.5813
Multi-Intervals [1.4, 2] 0.05 0.027 37.193
CR=207 [2, 3.5] 0.1 0.018 40.682

6.3 Multi-Interval Error-Bounded Compression Based
on Post Hoc Analysis in Nyx Cosmological Simulation

We now consider compression of the Nyx cosmological
simulation with a specific quantity of interest (i.e., dark
matter halo cell information). Dark matter halos play an
important role in the formation and evolution of galaxies
and consequently in cosmological simulations. Halos are
overdensities in the dark matter distribution and can be
identified by using different algorithms; in this instance,
we use the friends-of-friends algorithm [38]. For the Nyx
simulation, which is an Eulerian simulation instead of a
Lagrangian simulation, the halo-finding algorithm uses den-
sity data to identify halos [39]. For decompressed data, some
of the information can be distorted from the original, such
as halo cells and halo mass.

Figure 12 demonstrates that setting different error
bounds for different value intervals in Nyx simulation
datasets can preserve the features of interest (i.e., halo cells
in this example) better than global-range error-bounded
compression can. The key reason is that according to the
Nyx halo analysis code, the values in the range of [81,83]
need to be extremely precise (the reason is related to the
sophisticated physics, and we ignore the details here). For
our compression task, we set three value ranges and assign
a smaller error bound (0.1) to the data in the range of [81,83].
In this way the overall compression ratio will be higher with
less distortion on the halo visualization result, as shown in
Figure 12.

Table 8 shows the substantially higher precision of
our multi-interval error-bounded compression over global-
range error-bounded compression. We use RMSE of cell
number differences of halos and RMSE of mass differences
of halos in comparison with original data as two main
metrics to evaluate the results. Specifically, when passed
through the post hoc analysis, our multi-interval solution
can lead to significantly lower RMSE for cell number and
halo mass, compared with the original RMSE under the
global-range error-bounded compression.

12

(C)CR=207; Multi-Ranges: [0.5, 1.4)
eb=0.1; [1.4 2) eb=0.05; [2, 2.8)eb=0.1;

RMSE[1.4,2]=0.027, PSNR=37.193

(A)CR=206;Global Range and single error
bound: [0.5, 3.5) eb=0.07;

RMSE[1.4,2]=0.036, PSNR=34.801

Artifacts

Fewer Artifacts

(D) Data Distribution

Interesting
Range

Higher Precision
in this rangeImprove: Use a tighter error bound for the

interesting range and thus a higher precision.

(B) Original Data

Fig. 11. Miranda density slice No. 120. Comparing B with A, we can see
that not only can the multi-interval solution preserve a high precision at
a value range of interest with high compression ratio, but it also prevents
the blue regions from getting distorted.

(A) Original Data (B) Fallback
Compress

(C) Multi-Interval
Compress

False Positive

Fig. 12. Nyx halo cell visualization: The fallback method sets a global
error bound to be 0.5, and the compression ratio is 75. Our solution
(C) sets three ranges: [min, 81) with error bound 1, [81, 83) with error
bound 0.01, and [83, max) with error bound 1, and the compression ratio
is 78. In the visualization, our multi-interval solution (C) has cells almost
identical to the result using the original data, while the fallback method
(B) shows some distortion, and the cells’ position and number are not
identical to (A).

6.4 Multi-interval Error-Bounded Compression Using
Hurricane Katrina Simulation

We now investigate the combination of our methods on
the Hurricane Katrina dataset. The combined methods in-
clude handling irrelevant data, multi-interval error bound
settings, and different predictor settings (Lorenzo/linear
regression).

Hurricane Katrina was one of the most devastating
storms in the history of the United States because of its
resulted significantly high storm surge (over 10 meters on
the Mississippi coast) and high velocity. To model Katrina,
the area was discretized into 417,642 nodes forming 826,866
unstructured meshes. The simulation was performed with a
1-second time step, from 18:00 UTC August 23 through 12:00

TABLE 8
Comparison of Different Range Settings. Fallback sets only a global
error bound (here 0.01 and 0.5). Multi-interval uses our multi-interval
error-bounded compression with three error bounds ([min, 81)=1, [81,

83)=0.01, and [83,max)=1)

Method RMSE of cell number RMSE of halo mass
Fallback-0.01: 0.089 125.84
Fallback-0.5: 2.820 429.26
Multi-interval: 0.198 135.41

UTC August 30, 2005. The output hourly water elevation
data downloaded from the ADCIRC website (adcirc.org)
was used in this study, and the water elevation contour map
with a 1-meter interval at four times—3:00 am and 17:00 pm
UTC August 28 and 3:00 am UTC and 14:00 pm UTC August
29—was plotted for illustrative comparison.

Katrina caused water elevation, and we wish to pre-
serve more precisely the information about the elevation
data that are above 1 meter (the multi-interval constraint).
Moreover, some data points do not have meaningful values
in this dataset and are represented by -99999 (irrelevant
data). Therefore, we need to treat these values properly to
mitigate their influence on the compression performance. By
considering both irrelevant data and multi-interval error-
bound constraints, the compression quality (as shown in
Figure 13) can be improved significantly compared with the
original compression quality under the state-of-the-art SZ
2.1; see Figure 13 (D) and (E) vs. (B) and (C).

6.5 Multiregion Error-Bounded Compression (con-
straint D) Based on Visual Quality
To demonstrate the power of the region-based compression
method, we perform a post hoc analysis of three regions in
the QMCPACK dataset: slices 200, 300, and 400. Since each
slice will usually be observed in one analysis step, it is better
to set a suitable error bound for each slice instead of using a
uniform error bound. For example, an error bound of 0.001
might be suitable for a slice with the data value range [-0.5,
0.5] but would be too large for a slice with range [-0.0025,
0.0005]. In Figure 14, we can see significant distortion in
the selected regions in (C) even though the error bound is
generally small (0.01) for the whole dataset. Our solution
improves the quality by applying tighter error bounds on
the three regions/slices. The compression ratio may not
drop clearly, because the “tight-error-bound regions” are
small compared with the global dataset.

In addition to addressing some chosen slices with spe-
cific regions, the region-based compression algorithm can
achieve the effect of “different precisions for different areas”
in each slice. As shown in Figure 15, the left-bottom cor-
ner has much better visual quality than the other corners.
With these two examples, we demonstrate the flexibility
and locality of this region-based compression algorithm. In
general, setting some small regions for some parts of the
data that are of interest to the researchers will not influence
the global compression quality. Moreover, researchers can
set any number of regions in any parts of the dataset.
Although it does not make sense to set hundreds of regions
to select every possible interesting data points, the region-
based algorithm offers the flexibility to accommodate com-
plex requirements and demands.

13

(D) Composed; Double
Ranges: [-1, 1) eb=0.1, [1, 10)

eb=0.01; CR=50.78;

(1)

(2)

(3)

(A)Original* Composed;
Global Range eb=0.01;

CR=38.40;

(C)Fallback Composed; Global
Range eb=0.1; CR=42.9;

(E)Lorenzo Multirange [-1, 0.98)
eb=0.2; [0.98, 1.02) eb=0.001;

[1.02, 10) eb=0.01; CR=80

(B)Fallback Lorenzo; Global
Range eb=0.1; CR=37;

Fig. 13. Hurricane Katrina data: Each row is a frame of the Katrina simulation: (1) is frame 120, (2) is frame 130, and (3) is frame 141. Each column
represents a different setting of ranges and error bounds. Most of the blue data points in the graphs are close to zero. By applying a global range
with error bound to be 0.01 with our solution, the visualization is almost identical to the original data’s, and therefore we use one column (A) to
demonstrate the visualization result as a reference. The fallback version shown in (B) is to use the original 1D SZ compressor, which has only the
Lorenzo predictor and does not handle the irrelevant data; thus it has the lowest compression ratio even with a higher error bound 0.1. “Composed”
in (C) and (D) means we use a composed Lorenzo and linear regression predictor to predict values. “Lorenzo” in (E) means we use only the Lorenzo
predictor with no linear regression. Comparing (B) and (C), our solution wins on the global range test by handling the irrelevant data and using the
composed predictor (both Lorenzo and linear regression). Comparing (C) and (D), our multi-interval solution wins in both the compression ratio and
visualization result. Comparing (D) and (E), we can further improve the compression ratio by using the Lorenzo predictor only and allowing some
distortion in the deep blue area.

(A) Oursol (CR=54): multiple regions, create a
small region-box for each significant region [190 0
0:20 69 69], [290 0 0:20 69 69], [390 0 0:20 69 69],

and give each region a dedicated error bound.

(B) Original Data: the value ranges for the
demonstrated regions are different, and each
region requires a different precision to have a

good visualization result.

(C) SZ3 All-0.01 (CR=27): the old method
cannot take care of all regions. Even when
giving a quite tight error bound 0.01, some

regions will be hugely distorted.

S-200S-300S-400 S-200S-300S-400 S-200S-300S-400

Fig. 14. QMCPACK visual quality comparison: Each slice has 69×69 pixels. We select slice 200, 300, and 400 to observe the visual distortion
because each has a different range: slice 200 has range [-0.06, 0], slice 300 has range [-0.0016, 0], and slice 400 has range [-0.0025, 0.0005].

The feature of being able to set “different precisions for
different areas” is extremely useful in climate data. Scien-
tists and policy makers from different nations may share
the same global climate data while focusing on their own
country’s details. We use the CLDHGH field in the CESM
dataset to exemplify this feature. Since the dataset has a
tight value range and the neighboring values are smooth,
it is hard to visualize the difference directly between the
decompressed data and the original data in a small picture.
We calculate the difference between each data point and
visualize the difference instead. In Figure 16 (B), we can
clearly see that the data inside the region (circled by a red

rectangle) are much more precise than in the other areas
since there are almost no artifacts in the difference image. In
reaching the desired precision for the regions of interest, the
region-based method clearly outperforms the traditional SZ
compressor.

We also evaluate the (de)compression time overhead of
both multi-interval and multiregion methods. The overhead
of the multiregion method is proportional to the number of
regions, since each block needs to check the region list to
find which region it belongs to. In contrast, the overhead of
the multi-interval method is highly related to the precision
of the prediction. To make the performance measurement as

14

High Precision
Region

Low Precision
Region

Artifacts

Fig. 15. QMCPACK Slice 450, value range [0, 8]: A higher precision
0.001 for data in the area where x ∈ [0, 30] and y ∈ [30, 69], while keep-
ing the error bound of other areas 0.5; The compression ratio is 242, and
the SZ3 method with global error bound equal to 0.5 has a compression
ratio 243. The region almost does not harm the compression ratio at all.

(A) CLDHGH Data: The climate data
map, the shape of which corresponds

to the geolocations on earth

(B) The difference image using

region-based compression

Fig. 16. CESM with a region: while keeping the compression ratio high
(CR=316), we make the interesting region more precise (eb=0.01). The
error bound for the remaining regions is 0.02 in this example. If the SZ3’s
global error bound is used to reach eb=0.01 for the desired area, the
compression ratio is 57.

fair as possible, we use the same error bounds for all regions
and value intervals on 6 datasets, and we set 5 different
regions/intervals for each compression to guarantee that the
overhead is observable.

The compression tasks are performed on the Bebop bd-
wall partition with a single node, and we record the average
of 10 runs for each compression configuration. As shown in
Figure 17 and Table 9, the compression time overheads of
both the multi-interval method and region-based method
are not very high. The region-based method has slightly
smaller overhead compared with the multi-interval method.
The main reason is that our region-based method does
not follow a point-to-point evaluation; instead, we stipulate
each intrablock of the same region, cutting down consider-
able unnecessary computation. The same approach cannot
be applied to the multi-interval method because we cannot
assume neighboring points to be in the same value interval:
actually, they are likely to be in two different value intervals
specified by the user. To summarize, both methods lead to a
certain compression time overhead, while the overheads are
confined within an acceptable range.

Fig. 17. Comparison of compression time: The reference point is the
Fallback version, which means using a uniform error bound for all data
points. The overhead of the region-based method is slightly lower than
that of the multi-interval method.

TABLE 9
Compression Time and Overhead of Interval/Region/Fallback Methods

Method CESM QMC RTM MIRAN NYX ISAB
Interval(s) 0.20 5.39 1.20 1.08 5.70 1.08
Region(s) 0.19 4.94 1.18 1.03 5.46 1.01

Fallback(s) 0.18 4.80 1.12 1.00 5.18 0.96
Interval% 8.9% 12.3% 7.1% 6.8% 10.0% 13.0%
Region% 3.3% 3.0% 5.4% 1.9% 5.4% 5.7%

6.6 Bitmap-Specified Error Bound Compression (Con-
straint E)

A bitmap defines the most concrete error bound information
since it specifies an error bound for each data point. The
overhead of storing a bitmap is non-negligible if not prop-
erly compressed. In the following, we evaluate two methods
for storing the bitmap-specified error bounds: (1) the bitmap
array is background information that is stored separately by
users as metadata (e.g., the world map); and (2) the bitmap
needs to be stored with compressed data so it must also be
compressed.

6.6.1 Situation 1
We consider the CESM dataset as an example to evaluate
the first bitmap method. Our bitmap solution can help
users specify different precisions with fine granularity on
irregular regions, in contrast with the other regular-region-
based multierror-bounded compression method.

In the CESM dataset, we retrieve the bitmap array by
using the LANDFRAC field, because it is a good match
for separating the land and ocean area in a world map
(as shown in Figure 18 (F)). Applying LANDFRAC as the
bitmap, we test four different compression settings (de-
scribed in Table 10) on the other five data fields, as shown
in Table 11. In Table 10 we can see that the bitmap solution
sacrifices precision in the red area and can obtain a higher
compression ratio. The overall PSNR will decrease when
enlarging the error bound for red areas, but the compression
quality for the interesting areas (here, the blue areas are
considered interesting areas) remains the same—P 0 almost
does not decrease, while P 1 decreases because of a larger
error bound set in the corresponding area.

15

(A)CLDLOW (B)FREQSH

(C)LHFLX (D)PBLH

(E)TSMN (F)LANDFRAC

Fig. 18. Six fields in CESM: the visualization indicates that bitmap-
separated precisions may be suitable to compress these fields.

TABLE 10
Compression Setting Definition

Setting Description
A SZ2.1 [18]: Lorenzo & Linear Regression Predictor

with one global error bound
B Use SZ2.1’s predictor, but adopt two error bounds

set by a bitmap array
C Interpolation-based compression with one uniform

error bound [34]
D Our developed region-based error-bounded com-

pressor with two error bounds set by a bitmap

Table 11 demonstrates that our region-based multierror-
bounded compression method significantly outperforms
all other solutions in compression quality. The reason is
twofold. (1) Our developed bitmap method can be used to
fine-tune the precisions for different irregular regions, which
can preserve the quality for regions of interest more effec-
tively while reaching a high compression ratio. This can be
verified by comparing the settings C and D in the table. (2)
As we discussed in Section 5.6, the interpolation predictor
is much more effective than the linear regression predictor
used by SZ2.1. This can be verified by comparing settings A
and C in the table. The artifact issue described in Section 5.6
no longer exists when applying the interpolation predictor,
based on our experiment. We do not show a visualization

TABLE 11
Impact of compression settings on compression ratio (CR) and PSNR
for the six CESM fields of Fig 18: P 0/P 1 are the PSNR in the bitmap
separated blue/red area, respectively; CR’ is the compression ratio that

takes the bitmap into account

.
Data Field Setting CR CR’ PSNR P 0 P 1
CLDLOW A: eb=0.01 21 - 44.94 46.74 49.59
min=-0.1 B: eb=0.01, 0.1 30 29.0 29.71 46.74 29.73
max=1 C: eb=0.01 138 - 47.14 49.23 51.26

D: eb=0.01, 0.1 224 176.6 32.31 49.22 32.34
FREQSH A: eb=0.01 16 - 44.73 46.76 48.97
min=0 B: eb=0.01, 0.1 22 21.4 28.67 46.76 28.67
max=1 C: eb=0.01 88 - 46.79 48.83 50.99

D: eb= 0.01, 0.1 126 109.5 32.10 48.83 32.13
LHFLX A: eb=1 30 - 60.27 62.28 64.55
min=-100 B: eb=1, 10 48 45.4 49.36 62.28 49.55
max=600 C: eb=1 106 - 62.41 64.58 66.40

D: eb= 1, 10 216 171.6 47.81 64.63 47.84
PBLH A: eb=5 37 - 53.04 55.20 57.07
min=0 B: eb=5, 15 45 42.7 47.72 55.20 48.55
max=1600 C: eb=5 107 - 55.03 57.24 58.99

D: eb= 5, 15 169 140.5 49.23 57.26 49.93
TSMN A: eb=1 66 - 44.78 47.04 48.64
min=200 B: eb=1, 10 191 155.4 36.19 47.04 36.51
max=310 C: eb=1 292 - 47.14 49.41 50.99

D: eb= 1, 10 812 411.5 31.64 49.24 31.66

image here because of space limits. In fact, its visualization
for the interpolation method is almost indistinguishable
from Figure 6 (D).

6.6.2 Situation 2
In the second situation where the bitmap array needs to be
stored together with the compressed data, we compress the
bitmap array by integer-based Huffman encoding [6] and
Zstd [19]. Specifically, the input data is the integer bitmap
array with the same number of elements as the original
dataset.

Table 11 shows the compression ratio of our region-
based multierror-bounded lossy compression method (de-
noted as CR’) after embedding the bitmap into the com-
pressed data. Since uniform error-bounded compression
does not need to store the bitmap array, this column shows
only the compression ratios for settings B and D. We observe
that CR’ is close to CR (i.e., the compression ratio without
storing the bitmap array) in most cases. The reason is that
the bitmap array is fairly easy to compress with high ratios
(reach ∼800 in this example) because of the limited number
of error bounds. In fact, there are typically few error bounds
in practice because of the limited number of value intervals
of interest or regions of interest in general. Accordingly, the
error level values would likely exhibit repeated patterns in
the bitmap array, especially for the consecutive data points
in space, leading to a very high compression ratio.

6.7 Compression Time and Scalability

To evaluate the compression time and scalability, we run a
series of tests in parallel on thousands of CPU cores on the
Argonne LCRC Bebop supercomputer [40].

We use the QMCPACK dataset for these experiments.
According to the visualization results we obtained from the
preceding section, we observe that no data distortion can be
viewed by the naked eye as long as a relatively low error
bound of 0.15 is used. However, considering the potential

16

impact of the lossy compression on the user’s analysis, we
set a very low error bound (1E-5) for the range of interest: [-
8,-5). Preserving this condition, we perform the experiments
on the Bebop supercomputer with different numbers of
cores (each core has 600 MB of raw data to compress). The
results of BDW partitions are shown in Figure 19.

Fig. 19. BDW partition: for each pair of bars, the left side is multi-
interval solution’s result, and the right side is SZ’s result. CP/DP Time
are compression/decompression time respectively. Write ZIP/Write DP
are the I/O time to write the compressed/decompressed file respectively.
Read ORG is the time to read the original file.

TABLE 12
Time cost for each stage of SZ running with 2100 Cores; The variance

is calculated based on the 5 runs.

RUN 1 2 3 4 5 Variance
CP Time 9.11 8.67 8.3 9.21 8.05 0.25
DP Time 8.42 8.61 8.11 7.82 7.79 0.13
Write ZIP 12.17 112.75 30.29 30.11 16.93 1697.60
Write DP 55.77 53.84 176.56 175.79 162.33 4122.01
Total Time 95.61 229.77 304.32 304.56 231.38 7274.09

TABLE 13
Time cost for each stage of multi-interval algorithm running with 2100

Cores; The variance is calculated based on the 5 runs.

RUN 1 2 3 4 5 Variance
CP Time 7.38 7.3 7.29 7.29 8.2 0.16
DP Time 5.49 5.16 5.01 5.3 5.49 0.04
Write ZIP 39.78 45.46 46.05 1.49 1.43 542.87
Write DP 192.09 115.54 115.76 81.56 88.38 1925.85
Total Time 256.77 181.45 181.97 107.15 109.32 3850.00

As shown in TABLE 12 and TABLE 13, the
(de)compression time is very stable, but the I/O time varies
a lot for different runs. The reason for a large variance in
I/O is that the Bebop machine is a shared system, and the
disk I/O time will be influenced by other users’ tasks.

In Figure 19, we see that the write time takes an increas-
ing portion of the total time as we increase the number
of cores. Obviously, the I/O cost scales worse than our
lossy compression/decompression performance, especially
because of the limited number of I/O nodes used by the
system.

Based on our results, we observe that the
(de)compression time does not increase with the number
of cores, which shows that both our algorithm and SZ
have very good scalability. The key reason for good
scaling is that the lossy compression adopted in practice
follows an embarrassing parallel mode: no communication
exists among the execution ranks/cores. The key reason
our algorithm has lower compression/decompression
time than SZ is that our model allows for higher error
bounds for noninteresting ranges, which can lead to higher
compression ratios.

7 CONCLUSION AND FUTURE WORK

In this paper we propose multiple novel error-bounded
lossy compression methods that allow preserving various
user-defined constraints; to the best of our knowledge, this
is the first such lossy compression to allow these constraints.
Based on our evaluation using real-world simulations, we
report the following key findings.

• Multi-interval/region error-bound-based compres-
sion can significantly improve the visual quality for
users with the same or even higher compression
ratios.

• In the Nyx cosmology simulation, the multivalue-
interval error-bounded lossy compression can pre-
serve the halo cells perfectly with a high compression
ratio up to 78, while the uniform error-bounded
compression suffers significant distortion of cells.

• In the Hurricane Katrina simulation, multi-interval
error-bounded compression can improve the com-
pression ratio from 37 (based on SZ) to 80 (improved
by 116%), even with higher data fidelity in maintain-
ing the shape of hurricane.

• Evaluation for the bitmap-based solution shows that
the cost to satisfying a customized complex region
requirement is acceptable and our solution can pos-
sibly be generalized to suit all kinds of fine-grained
error bound settings.

• Experiments on the Argonne Bebop [40] supercom-
puter with up to 2,100 cores show that our multi-
precision lossy compressors have a very good scala-
bility.

In the future we will explore new data fidelity requirements
used by more applications in practice.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collabora-

17

tive effort of two DOE organizations -– the Office of Sci-
ence and the National Nuclear Security Administration,
responsible for the planning and preparation of a capa-
ble exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed
platforms, to support the nation’s exascale computing im-
perative. The material was based upon work supported
by the U.S. Department of Energy, Office of Science, by
the DOE’s Advanced Scientific Computing Research office,
under contract DE-AC02-06CH11357, and supported by the
National Science Foundation under Grant OAC-2003709,
OAC-2003624/2042084 and CSSI-2104023/2104024. We ac-
knowledge the computing resources provided on Bebop,
which is operated by the Laboratory Computing Resource
Center at Argonne National Laboratory.

-

REFERENCES

[1] J. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand,
J. Arblaster, S. Bates, G. Danabasoglu, J. Edwards et al., “The
community earth system model (CESM), large ensemble project: A
community resource for studying climate change in the presence
of internal climate variability,” Bulletin of the American Meteorologi-
cal Society, vol. 96, no. 8, pp. 1333–1349, 2015.

[2] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka,
S. A. Mickelson, J. Edwards, M. Vertenstein, and A. Wegener, “A
methodology for evaluating the impact of data compression on
climate simulation data,” in HPDC’14, 2014, pp. 203–214.

[3] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heit-
mann, K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al.,
“HACC: extreme scaling and performance across diverse archi-
tectures,” Communications of the ACM, vol. 60, no. 1, pp. 97–104,
2016.

[4] D. T. with Globus, https://www.globus.org/data-transfer, online.
[5] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE

Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[6] S. Di and F. Cappello, “Fast error-bounded lossy HPC data com-
pression with SZ,” in IEEE International Parallel and Distributed
Processing Symposium (IEEE IPDPS). IEEE, 2016, pp. 730–739.

[7] F. Cappello, S. Di, and et al., “Use cases of lossy compression for
floating-point data in scientific data sets,” The International Journal
of High Performance Computing Applications, vol. 33, no. 6, pp. 1201–
1220, 2019.

[8] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using
data compression,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’19. NY, USA: Association for Computing Machinery, 2019.

[9] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Improving
performance of iterative methods by lossy checkponting,” in
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 52–65.

[10] S. Jin, S. Di, X. Liang, J. Tian, D. Tao, and F. Cappello,
“DeepSZ: A novel framework to compress deep neural
networks by using error-bounded lossy compression,” in
Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’19. New
York, NY, USA: ACM, 2019, pp. 159–170. [Online]. Available:
http://doi.acm.org/10.1145/3307681.3326608

[11] D. Tao, S. Di, Z. Chen, and F. Cappello, “In-depth exploration of
single-snapshot lossy compression techniques for N-body simula-
tions,” in 2017 IEEE International Conference on Big Data (Big Data),
2017, pp. 486–493.

[12] ——, “Significantly improving lossy compression for scientific
data sets based on multidimensional prediction and error-
controlled quantization,” in IEEE International Parallel and Dis-
tributed Processing Symposium (IEEE IPDPS). IEEE, 2017, pp. 1129–
1139.

[13] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel
techniques for compression and reduction of scientific data—the
univariate case,” Computing and Visualization in Science, vol. 19,
no. 5, pp. 65–76, Dec 2018.

[14] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of
lossy compression for application-level checkpoint/restart,” in
2015 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2015, pp. 914–922.

[15] A. H. Baker, D. M. Hammerling, and T. L. Turton, “Evaluating
image quality measures to assess the impact of lossy data com-
pression applied to climate simulation data,” Computer Graphics
Forum, vol. 38, no. 3, pp. 517–528, 2019.

[16] NYX simulation, https://amrex-astro.github.io/Nyx, online.
[17] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “FRaZ: A

generic high-fidelity fixed-ratio lossy compression framework for
scientific floating-point data,” https://arxiv.org/abs/2001.06139,
2020, online.

[18] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cap-
pello, “Error-controlled lossy compression optimized for high
compression ratios of scientific datasets,” in 2018 IEEE International
Conference on Big Data. IEEE, 2018.

[19] Zstd, https://github.com/facebook/zstd/releases, online.
[20] Gzip, https://www.gzip.org/, online.
[21] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed com-

pressor for double-precision floating-point data,” IEEE Transac-
tions on Computers, vol. 58, no. 1, pp. 18–31, 2008.

[22] Blosc compressor, http://blosc.org/, 2018, online.
[23] P. Lindstrom and M. Isenburg, “Fast and efficient compression of

floating-point data,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[24] C. S. Zender, “Bit grooming: statistically accurate precision-
preserving quantization with compression, evaluated in the
netCDF operators (NCO, v4.4.8+),” Geoscientific Model Develop-
ment, vol. 9, no. 9, pp. 3199–3211, 2016.

[25] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and
A. Choudhary, “Data compression for the exascale computing era
– survey,” Supercomputing Frontiers and Innovations, vol. 1, no. 2,
pp. 76–88, 2014.

[26] P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast lossless com-
pression of scientific floating-point data,” in Data Compression
Conference (DCC’06), IEEE. New York, NY, USA: IEEE, 2006, pp.
133–142.

[27] J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, and P. Lindstrom,
“Error analysis of ZFP compression for floating-point data,” SIAM
Journal on Scientific Computing, 02 2019.

[28] J. Zhang, X. Zhuo, A. Moon, H. Liu, and S. W. Son, “Effi-
cient encoding and reconstruction of HPC datasets for check-
point/restart,” in Proceedings of the 35th International Conference on
Massive Storage Systems and Technology (IEEE MSST19), 2019.

[29] S. Di, D. Tao, X. Liang, and F. Cappello, “Sz tutorial
hands-on guide,” https://www.mcs.anl.gov/∼shdi/download/
sz-hands-on.pdf, 2018, online.

[30] X. Delaunay, A. Courtois, and F. Gouillon, “Evaluation of lossless
and lossy algorithms for the compression of scientific datasets
in netcdf-4 or hdf5 files,” Geoscientific Model Development, vol. 12,
no. 9, pp. 4099–4113, 2019.

[31] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Fixed-PSNR
lossy compression for scientific data,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), 2018, pp. 314–318.

[32] Hurricane ISABELA Simulation Datasets, http://vis.computer.
org/vis2004contest/data.html.

[33] “Katrina simulation,” https://adcirc.org/home/documentation/
example-problems/katrina-run-2015-nws-20-example/, online.

[34] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and
F. Cappello, “Optimizing error-bounded lossy compression for
scientific data by dynamic spline interpolation,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE), 2021, pp. 1643–
1654.

[35] QMCPack, https://qmcpack.org/, online.
[36] R. T. Migration, http://www.seismiccity.com/RTM.html, online.
[37] Miranda, https://wci.llnl.gov/simulation/computer-codes/

miranda.
[38] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. White, “The

evolution of large-scale structure in a universe dominated by cold
dark matter,” The Astrophysical Journal, vol. 292, pp. 371–394, 1985.

[39] B. Friesen, A. Almgren, Z. Lukić, G. Weber, D. Morozov, V. Beck-
ner, and M. Day, “In situ and in-transit analysis of cosmological

https://www.globus.org/data-transfer
http://doi.acm.org/10.1145/3307681.3326608
https://amrex-astro.github.io/Nyx
https://arxiv.org/abs/2001.06139
https://github.com/facebook/zstd/releases
https://www.gzip.org/
http://blosc.org/
https://www.mcs.anl.gov/~shdi/download/sz-hands-on.pdf
https://www.mcs.anl.gov/~shdi/download/sz-hands-on.pdf
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html
https://adcirc.org/home/documentation/example-problems/katrina-run-2015-nws-20-example/
https://adcirc.org/home/documentation/example-problems/katrina-run-2015-nws-20-example/
https://qmcpack.org/
http://www.seismiccity.com/RTM.html
https://wci.llnl.gov/simulation/computer-codes/miranda
https://wci.llnl.gov/simulation/computer-codes/miranda

18

simulations,” Computational Astrophysics and Cosmology, vol. 3,
no. 1, pp. 1–18, 2016.

[40] Bebop, https://www.lcrc.anl.gov/systems/resources/bebop, on-
line.

Yuanjian Liu is a Ph.D. student at the Uni-
versity of Chicago. His research interests in-
clude autonomous laboratories, computer vi-
sion, high-performance computing, and the uti-
lization of scientific data. He is also working
on the availability of knowledge and believes
that online education can have both higher ef-
ficiency and broader influence. Email: yuan-
jian@uchicago.edu.

Sheng Di (Senior Member, IEEE) received his
master’s degree from Huazhong University of
Science and Technology in 2007 and Ph.D. de-
gree from the University of Hong Kong in 2011.
He is currently a computer scientist at Argonne
National Laboratory. His research interests in-
volve resilience on high-performance comput-
ing (such as silent data corruption, optimization
checkpoint model, and in situ data compression)
and broad research topics on cloud computing.
He is working on multiple HPC projects, such as

detection of silent data corruption, characterization of failures and faults
for HPC systems, and optimization of multilevel checkpoint models. He
is the recipient of a DOE 2021 Early Career Research Program award.
Email: sdi@anl.gov.

Kai Zhao received his bachelor’s degree from
Peking University in 2014 and will receive his
Ph.D. degree from the University of Califor-
nia, Riverside, in 2022. He is a long-term in-
tern at Argonne National Laboratory. His re-
search interests include high-performance com-
puting, scientific data management and re-
duction, and resilient machine learning. Email:
kzhao016@ucr.edu.

Sian Jin is a Ph.D. candidate in computer sci-
ence at Washington State University. He re-
ceived his B.S. in physics from Beijing Nor-
mal University in 2018. His research interests
include high-performance computing, scientific
data analysis and management, data reduction
and lossy compression, and large-scale ma-
chine learning. Email: sian.jin@wsu.edu.

Cheng Wang Cheng Wang is an environmen-
tal system engineer in the Environmental Sci-
ence Division at Argonne National Laboratory.
He received his Ph.D. in civil engineering from
the University of Central Florida in 2009. His
specialty areas are in the field of water re-
sources engineering involved in hydrology, re-
active biogeochemistry and transport, and other
related disciplines. Specific examples of his ex-
pertise include numerical watershed modeling
(e.g., WASH123D model); surface water hydro-

dynamic and sediment and reactive-chemical transport modeling; sub-
surface water hydrodynamic and reactive-chemical transport modeling;
and coupled fluid flow and water quality modeling in surface and sub-
surface water systems. Email: wangcheng@anl.gov.

Kyle Chard is a research assistant professor
in the Department of Computer Science at the
University of Chicago. He also holds a joint ap-
pointment at Argonne National Laboratory. He
received his Ph.D. in computer science from Vic-
toria University of Wellington, New Zealand, in
2011. He is a member of the ACM and IEEE. He
co-leads the Globus Labs research group, which
focuses on a broad range of research problems
in data-intensive computing and research data
management. Email: chard@uchicago.edu.

Dingwen Tao is an assistant professor of com-
puter science at Washington State University.
He received his Ph.D. in computer science from
the University of California, Riverside, in 2018
and B.S. in mathematics from the University
of Science and Technology of China in 2013.
His research interests include high-performance
computing, big data analytics, scientific data
management, fault tolerance and resilience, and
large-scale machine learning. He is the recipi-
ent of a 2021 R&D 100 Award, 2020 IEEE-CS

TCHPC Early Career Researchers Award for Excellence in HPC, 2020
NSF CRII Award, and 2017 UCR Dissertation Year Program Award.
Email: dingwen.tao@wsu.edu

Franck Cappello is the director of the Joint-
Laboratory on Extreme Scale Computing gath-
ering six of the leading high-performance com-
puting institutions in the world: Argonne National
Laboratory, National Center for Scientific Appli-
cations, Inria, Barcelona Supercomputing Cen-
ter, Julich Supercomputing Center, and Riken
AICS. He is a senior computer scientist at Ar-
gonne National Laboratory and an adjunct asso-
ciate professor in the Department of Computer
Science at the University of Illinois at Urbana-

Champaign. He is an expert in resilience and fault tolerance for scientific
computing and data analytics. Recently he started investigating lossy
compression for scientific datasets to respond to the pressing needs
of scientist performing large-scale simulations and experiments. His
contribution to this domain is one of the best lossy compressors for
scientific datasets respecting user-set error bounds. He is a member of
the editorial board of the IEEE Transactions on Parallel and Distributed
Computing and of the ACM HPDC and IEEE CCGRID steering commit-
tees. He is a fellow of the IEEE. Email: cappello@mcs.anl.gov.

Ian Foster is an Argonne Distinguished Fellow,
senior scientist, and director of the Data Science
and Learning division at Argonne National Lab-
oratory and a professor in the Department of
Computer Science at the University of Chicago.
He develops tools and techniques that allow
people to use high-performance computing tech-
nologies to do qualitatively new things. His work
involves investigations of parallel and distributed
languages, algorithms, and communication, as
well as applications. He is particularly interested

in using high-performance networking to incorporate remote compute
and information resources into local computational environments. Email:
foster@cs.uchicago.edu.

https://www.lcrc.anl.gov/systems/resources/bebop

	Introduction
	Related Work
	Research Background
	SZ Compression Model
	Diverse Constraints in Scientific Datasets

	Problem Formulation
	Error-Bounded Lossy Compression Framework with Diverse Constraints
	Handling Irrelevant Data
	Preserving Global Value Range
	Preserving Multi-Interval Error Bounds
	Preserving Multiregion Error Bounds
	Preserving Irregular Regions by Bitmap
	Artifact Removal in Multiprecision Compression
	Summary of Proposed Methods and Their Potential Use Cases

	Experimental Evaluation
	Preserving Irrelevant Data (constraint A) and Global Value Range (constraint B)
	Multi-interval Error-Bounded Compression (Constraint C) Based on Visual Quality
	Multi-Interval Error-Bounded Compression Based on Post Hoc Analysis in Nyx Cosmological Simulation
	Multi-interval Error-Bounded Compression Using Hurricane Katrina Simulation
	Multiregion Error-Bounded Compression (constraint D) Based on Visual Quality
	Bitmap-Specified Error Bound Compression (Constraint E)
	Situation 1
	Situation 2

	Compression Time and Scalability

	Conclusion and Future Work
	References
	Biographies
	Yuanjian Liu
	Sheng Di
	Kai Zhao
	Sian Jin
	Cheng Wang
	Kyle Chard
	Dingwen Tao
	Franck Cappello
	Ian Foster

