
FastqZip: An Improved Reference-Based Genome
Sequence Lossy Compression Framework

Yuanjian Liu†∗, Huihao Luo†, Zhijun Han†, Yao Hu†, Yehui Yang†,
Kyle Chard∗, Sheng Di‡, Ian Foster∗‡, Jiesheng Wu†

† Alibaba Cloud, China
∗ University of Chicago, Chicago, IL, USA

‡ Argonne National Laboratory, Lemont, IL, USA
yuanjian@uchicago.edu, jiesheng.wu@alibaba-inc.com

Abstract—Storing and archiving data produced by next-
generation sequencing (NGS) is a huge burden for research in-
stitutions. Reference-based compression algorithms are effective
in dealing with these data. Our work focuses on compressing
FASTQ format files with an improved reference-based compres-
sion algorithm to achieve a higher compression ratio than other
state-of-the-art algorithms. We propose FastqZip which uses a
new method mapping the sequence to reference for compres-
sion, allows reads-reordering and lossy quality scores, and the
BSC or ZPAQ algorithm to perform final lossless compression
for a higher compression ratio and relatively fast speed. Our
method ensures the sequence can be losslessly reconstructed while
allowing lossless or lossy compression for the quality scores.
We reordered the reads to get a higher compression ratio. We
evaluate our algorithms on five datasets and show that FastqZip
can outperform the SOTA algorithm Genozip by around 10% in
terms of compression ratio while having an acceptable slowdown.

Index Terms—next-generation sequencing, reference-based
compression, genome sequence compression.

I. INTRODUCTION

Next-generation sequencing (NGS) technologies continue
to improve their performance. For example, the DNBSQ-
T20 sequencing platform released by Complete Genomics at
the 2023 Conference on Genome Biology and Technology
can generate 22 TB of sequence data per day. The high
cost of storing these data means that even modest levels of
compression can be of great benefit.

Raw sequencing data are typically stored in FASTQ for-
mat [1]. A FASTQ file consists of a separate entry for each
short sequence, consisting of four lines: an identifier string, a
nucleotide sequence (the read), the character ’+’, and quality
scores. The identifier string contains information about the
sequencing technology and other metadata obtained from the
sequencing machine, which uniquely describes a read. The
nucleotide sequence is a string of A, C, G, T, and N characters
representing the bases (base-pairs) of the DNA sequence.
There are some other characters for storing protein sequences,
which do not exist in our datasets. The quality scores record
the confidence of each base generated by the sequencing
machine. Due to their higher entropy and larger alphabets,
quality scores have proven to be more difficult to compress
than reads [2].

To reduce the space required to store FASTQ files, re-
searchers focus on the compression of the reads and quality
scores, which consume most of the space and carry the most
relevant information [2]. Traditional general-purpose compres-
sion algorithms such as gzip [3], and bzip2 [4] fail to obtain
a high compression ratio for sequencing data. Thus, many
specialized FASTQ compressors [5]–[8] have been proposed.
The most successful of these algorithms are so-called reference
methods, which exploit the fact that more than 99% of human
genomes are identical [9] to reduce greatly the storage space
required.

A T G ATRead 1

A C G A C C GRead 2

G

Read 3 G A C C G T T

A T G A C CT CGReference

0 1 2 3 4 5 6 7 8 9 10 11 12

C
13

A TTG

Index

GTAT

GACC

1

5C

A Deletion: Read 3 cannot
be matched in GenozipT

Modification

Exact Match
seeds positions

9

Fig. 1. Reference-based sequence matching process: (1) use seeds to build
an index for the reference sequence; (2) find matching locations for reads
on the reference sequence; (3) for unmatched bases, store the difference. Our
algorithm performs better matching by storing more seeds for a higher chance
of matching, and local search for insertion and deletion detection.

Most existing genome sequence compression algorithms [8],
[10], [11] are lossless, a choice that limits achievable compres-
sion but is not necessary for most downstream analyses. In
practice, 1) the reads in a FASTQ file are usually independent
of each other, and thus can be reordered with no impact on
most downstream analysis [12]; 2) the informtion contained
in a read’s (verbose) identifier is typically ignored, and thus
can be replaced with a more compact unique identifier; and
3) analysis scores are often not sensitive to quality scores,
and thus scores can be quantized to improve compression
performance.

In this work, we propose an algorithm that employs more
fine-grained read-to-reference matching, read sorting, and op-
tional lossy quality compression to achieve a compression ratio
that is higher than the state-of-the-art (SOTA) algorithms for
raw sequencing data. Our key contributions are as follows:

1

1) We propose a reference-based genome sequence com-
pression framework, FastqZip, which outperforms SOTA
compression algorithms and achieves a higher compres-
sion ratio.

2) We design a novel sequence matching procedure that
can find a match when the Hamming Distance is huge
but the Edit Distance is small between the read and
the reference. Therefore, many previously unmatchable
reads can be reconstructed from the reference sequence.

3) We conduct comprehensive evaluations and compare the
performance of our algorithms with SOTA algorithms.
The result shows that FastqZip has the best compression
ratio over five common datasets.

4) We show that our algorithm scales better than existing
algorithms when parallelized over many resources.

The rest of the paper is organized as follows. In Section II,
we review previous work on genome sequence compression.
In Section III, we formally define the problem. In Section IV,
we introduce FastqZip and our algorithms. In Section V, we
conduct evaluations on five real-world datasets and compare
our algorithm with SOTA methods. In Section VI, we conclude
and discuss potential future directions.

II. RELATED WORK

A. DNA Sequencing Technologies

The Human Genome Project [13] sought to sequence the
DNA of every human chromosome. Early efforts to sequence
genes such as [14] are painstaking, time-consuming, and labor-
intensive. Sanger sequencing [15] changed this situation by
using a purified DNA polymerase enzyme to synthesize DNA
chains of varying lengths. The procedure is sensitive enough to
distinguish DNA fragments with just a single nucleotide differ-
ence. Continued developments have produced next-generation
sequencing (NGS) methods and machines that generate data
at rates that have increased faster than Moore’s Law.

Illumina [16], a widely used modern DNA sequencing
platform, produces raw data files in binary format (BCL) that
contain the fluorescent signal intensities for each nucleotide
incorporation event. To convert this data into a more useful
format, the instrument software performs base calling and
quality scoring to generate a FASTQ [1] file.

B. DNA Sequence Compression Algorithms

Existing FASTQ sequence compression algorithms can be
categorized into two classes: reference-based and reference-
free algorithms. Reference-based algorithms map the nu-
cleotide sequences in a FASTQ file to a reference genome and
use the mapped positions to encode the sequences. Examples
include LW-FQZip [17], LW-FQZip2 [18], GTZ [19], and
genozip [8].

Reference-free algorithms are used when a reference
genome is not available. For example, Leon [20] and Quip
[21] use assembly-based algorithms, in which a De Bruijn
graph is constructed from the already compressed sequences
and incoming sequences are matched to the graph to locate the
longest exact matches. Other specialized FASTQ compressors

initially perform a form of transformation (read-identifier tok-
enization or 2-bit nucleotide encoding) followed by statistical
modeling and entropy coding. Examples of such approaches
are DSRC2 [22], FQC [23], Fqzcomp [24], Slimfastq [24],
LFQC [25], and Spring [26]. FQSqueezer [27], a more recent
compressor, uses partial matching and a dynamic Markov
coder.

Generally, reference-based compressors perform better in
terms of both compression time and ratio than reference-free
compressors, and thus we focus here on a reference-based
algorithm for FASTQ compression. Moreover, we tested all
of the aforementioned algorithms in Section V and found
that most suffer from low compression ratio, extremely slow
compression speed, and bad scalability on multiple processors,
and furthermore are painstaking to build and can be erroneous
on certain datasets. Therefore, we hope to provide a FASTQ
compression tool that has better performance and is easier to
use.

III. PROBLEM FORMULATION

We provide a formal definition of our reference-based
genome compression problem.

A FASTQ file contains information about a set of reads,
Ri, each defined by three components: a target sequence,
a set of quality scores, and an identifier. In a raw FASTQ
file, the target sequence and quality scores each take equally
around 49% of the storage space, while the identifiers take the
rest 2̃%. Each component can be compressed independently.
The target sequence has to be lossless, but the order can be
relaxed. We use the reference-based matching algorithm for
the target sequence while using some traditional lossy/lossless
algorithms for the quality scores and the identifiers.

For a single read Ri with target genome sequence XN ,
then given Y M as the reference information, we define an
encoder f(·, ·) by mapping XN to a byte sequence BK

with relationship BK = f(XN , Y M), where N is the target
sequence length, M is the reference sequence length, and K
is the compressed byte sequence length. One measure of a
successful compressor is that it yields a BK for which K < N .
The decoder g(·, ·) should then recover BK to XN with a
function g(BK , Y M). Thus the encoder-decoder pair together
recreate the original sequence:

XN = g(f(XN , Y M), Y M) (1)

We preserve the losslessness for each read but relax the
order restriction for a group of reads in one FASTQ file.
Given K reads, each of length N , then after compression and
decompression we have:

XN
i1

XN
i2
...

XN
iK

 = G

F



XN

1

XN
2
...

XN
K

 , Y M

 , Y M

 (2)

where F , G are the corresponding functions of f , g that can
handle a vector of X , and each XN

k should be identical to one
XN

ij
, i.e., ∀k ∈ [1,K], XN

k ,∃ij ∈ [1,K] such that XN
k = XN

ij
.

2

Moreover, there is a computation cost for F (·, ·) and G(·, ·).
We use Tf and Tg to denote the time cost for the encoding
and decoding process. Our algorithm should consider both the
compression time cost and compression ratio, and therefore
we define s(CR, T) as a score function, where CR is the
compression ratio and T is the (de)compression time.

The goal is to construct an encoding/decoding pair that
maximizes s(N/K, Tf + Tg) while preserving Equations 1
and 2.

IV. METHODOLOGY

The FastqZip compression can be separated into four parts:
(1) index loading, (2) sequence alignment, (3) sequence and
quality segmentation, and (4) lossless compression. In this
section, we will present the overall architecture and describe
the core algorithm for each part, introduce the compressed file
structure, and walk through the proposed parallel file structure
for performance improvement.

A. Compression Architecture

We propose the compression architecture shown in Fig. 2.
The architecture employs one read thread, one write thread,
and several worker threads to perform compression. These
threads are synchronized by read and write buffers (in the pro-
gram, the synchronization is performed by condition variables
and mutexes). The read thread continues reading data from
disks and stores them in the read buffer in memory. The worker
will try to read a chunk from the read buffer. When the data is
ready, one worker will retrieve it and remove the entry in the
read buffer so that the read thread can read the next chunk.
After the worker finishes compression, it puts the compressed
data in the write buffer and tries to retrieve the next chunk from
the read buffer. If the write buffer is full or the read buffer is
empty, the worker thread waits. This design allows FastqZip
to compress extremely large FASTQ files without breaking
memory limits and to achieve high degrees of parallelism.

This architecture supports parallelism by allowing multiple
workers to compress each chunk independently and write to
the compressed file without waiting for any other workers.
Moreover, we propose a compressed file structure that allows
parallel reading which enhances the parallel decompression
performance. However, because the read thread needs to read
the gzipped file sequentially due to characteristics of the gzip
algorithm, when there are more workers, the read thread can
soon be too slow to fill up the read buffer. We will evaluate
the parallelism and scalability later in Section V.

B. Index Building & Loading

An index is necessary for reference-based compression
because naive long-string comparison is extremely slow. We
only need to build the index once for each reference sequence.
After the index is built, loading it into memory can be
much faster during compression. Over the years, various data
structures, such as hash tables and FM-index, have been used.
We employ a key-value map in which short seed sequences
serve as keys, and the values are the positions of those seeds

Read Thread

FASTQ Files (Gzipped)

Start Current

K K KK
Read Buffer

Index (In Memory)K Reads per chunk

Aligner

Index Files

Segmenter

Lossless

Worker

Aligner

Segmenter

Lossless

Worker

Write Thread

K KKWrite Buffer

Compressed File

Fig. 2. FastqZip compression architecture: The read thread must be sequential,
but workers can proceed in parallel. The read buffer and write buffer allow
maximum parallelism for the whole pipeline.

in the reference sequence, as shown in Fig. 3. A seed is a short
sequence that: (1) starts with the base ‘G’, (2) has a second
base that is not ‘G’, and (3) has a predefined fixed length.
The second condition is to avoid storing too many seeds of
similar purpose when there are many continuous ‘G’s on the
reference sequence.

GATCAGTTCACGTACSeed Example

Seed 1

Seed 2

Seed 3

Index Map

215

seeds positions

478 576 688 935

Start with 'G' The second is not 'G' (3) The length is seed_length

seed_length = 15

365 867 932

137 268 988 1068

Fig. 3. Index concept: we look for all valid seeds in the reference sequence
and record their positions. There are multiple positions because the same seed
may appear multiple times in different locations on the reference sequence.

To simplify the storage of the index file, we propose
three concepts: (1) forward sequence, (2) range index, and
(3) forward index. The forward sequence is to connect the
reference sequences to form one long sequence, and replace
all non-ACGT bases with ‘A’. The range index is a fixed-length
array storing the cumulative number of repetitions for seeds,
as shown in Fig. 4. Each position in the range index is an
integer converted from a seed. If we predefine the seed length
to be 15, the index range’s length will be 3× 4(15−2), so any

3

seed of length 15 can be uniquely mapped to one index in the
index range array. The forward index is an array that stores
the reference positions, following a strict order of each seed’s
converted integer. For example, in Fig. 4, seed1 appears once
in the reference sequence, at position 59; seed2 also appears
once, at position 98; and seed3 appears three times, at positions
180, 340, and 790.

0 1 1 2 2 20 50range
index

0 1 2 3 4 5 6 7 8 9 10 11 12

0
13

5 555

forward
index 340 79018098

0 1 2 3 4

59

seed1 seed3seed2

Fig. 4. Index storage: The range index and forward index arrays together
store the reference positions for all seeds. A seed can be uniquely mapped to
an index i in the index range array. The value in index range[i] is the starting
index in the index forward array, and the value in index range[i + 1] is the
index after the ending index in the index forward array.

Compared to prior work, Genozip [8], we store all the
positions for repeated seeds instead of only four so that there
can be a better match during the alignment step.

C. Sequence Alignment

Due to the high similarity among genome sequences of
the same species, we can consider each read in a FASTQ
file to be a short subsequence extracted from the reference
sequence. The issue is that we do not know the exact position
from which each read is extracted. Our goal in the sequence
alignment step is to match each read to one position in the
reference sequence so that, ideally, we can reconstruct the
read with a position and the reference sequence. This task
is complicated by mutations, insertions, deletions, and totally
unmatchable reads. It is inefficient to test all possible locations,
and other than exact matches, the algorithm needs to store
some additional information and be smart to identify the match
when there is some but not too much difference. In this section,
we propose an improved global + local search approach that
outperforms the existing algorithms [8] [10] [11] in terms of
compression ratio.

The alignment procedure is illustrated by Fig. 5. For each
read, we iterate through the seeds in both forward and back-
ward directions and calculate the starting position of this read
on the reference sequence. If two seeds appear to have the
same starting position, it is likely that the read is indeed cut
from the reference at that position. We consider this read a
matchable candidate when the same reference start is found.
We need to further verify if the match is exact or if there is
any difference. To make this process fast, we calculate the
Hamming Distance [28], which is an XOR operation between
two sequences. When there is no difference or only a few base
modifications, the Hamming Distance will be small, and we
can consider that a match is found.

However, if there is just one insertion or deletion, all the
following bases can be mismatched, resulting in a huge Ham-

Seed 1 Seed 2 Seed i

Seed j Seed N-1 Seed N
Reference

Read Seed i

Seed j Seed x

(1) Same Ref Start Found
Forward Matching

Backward Matching

Calculate Hamming
Distance H(x)

The piece on the reference

H
(x

) >
 x

or
_r

at
e

Local Alignment

H(x) <= xor_rate
Matched

Calculate Edit
Distance E(x)

E(x) <= threshhold

Unmatched
E(x) > threshhold

(2) No Same Ref Start Found

Fig. 5. Alignment procedure: when multiple seeds exist on a single read, if
a match exists, two seeds should match to the same starting position on the
reference. If the candidate sequence on the reference has a very low Hamming
Distance against the read, it is a match. If there are the same starting positions,
but the Hamming Distance is large, we use our proposed local alignment to
find a match with insertion or deletion.

A T G A C CT CG
0 1 2 3 4 5 6 7 8 9 10 11 12

C
13

A TTGReference

Fixed Read A T G A C CT CG
0 1 2 3 4 5 6 7 8 9 10 11 12

C
13

A TTG

Deletion

Read A T G A C CT CC A TTG
✅ ❌ ❌❌ ❌ ❌ ❌ ❌ ✅

✅

❌ ❌ ❌ ❌

✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

Fig. 6. Illustration of how a large Hamming Distance forms when there is a
deletion or insertion.

ming Distance, as illustrated in Fig. 6. Prior works [8] [10]
[11] consider such cases unmatchable sequences. We improve
the algorithm’s matching capability by further conducting a
local search to calculate the Edit Distance [29] when the same
reference start is found but the Hamming Distance is huge. We
use the WFA-2 algorithm [30] [31] to get the Edit Distance
and the alignment CIGAR [32] to reconstruct the original read
with insertions or deletions.

Map Result

bitmap

ref_start

non_ref

strand

sequence

quality

name

unchanged

Fig. 7. Map Result Fields: the quality scores, and name identifier are stored
unchanged. If a match is found, the sequence can be freed. The field is
for unmatched sequence and decompression. The ref start is an integer that
indicates the matched starting position on the reference. The strand is a
boolean value that indicates whether the match is a forward match or a reverse
complement match. The bitmap and non ref together store the matching
information that is necessary for reconstructing the read.

After the sequence alignment step, each read will result
in a MapResult, the fields of which are shown in Fig. 7.

4

The alignment gives us a bitmap, a non ref sequence, and a
strand. The bitmap marks the matched and unmatched bases:
for a matched base, the value is 1, and for an unmatched
modification, the value is 0; if there is an insertion or deletion
(indel), the position prior to the indel is marked as 0, and we
store indel information in the non ref sequence. The non ref
sequence stores the information for unmatched bases. If the
unmatched base is a modification, non ref just stores the
original base in the read. If the unmatched base is an indication
of indel, we use ‘I’ to mark an insertion and ‘D’ to mark
a deletion. Following an ‘I’ or ‘D’ is an integer number
indicating how many bases are deleted or inserted plus 1, and
then the base character before the indel happens, as shown in
Fig. 8. With the reference sequence, ref start, bitmap, non ref,
and the strand, we can fully reconstruct the original read. The
data size is significantly reduced because (1) the bitmap uses a
bit instead of a byte to mark a base and (2) the bitmap can be
further compressed since there are usually many continuous
1s.

A T G A C CT CG
0 1 2 3 4 5 6 7 8 9 10 11 12

C
13

A TTGReference

Read A G G A C TT C
0 2 3 4 5 6 7 8 9 10 11 12

C A TTG

bitmap 0 1 1 1 0 111
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 111

1

non_ref G TC2
0 1 2 3 4

D

Fig. 8. Bitmap and non ref illustration: the ‘G’ in index 1 of reference does
not exist in the read, but after that, most of the bases can be matched, so we
say it is a deletion. The non ref will store ‘D’ and 2 since one base is deleted.
The ‘C’ in the non ref is the ‘C’ in index 0 of the read. Although it is matched
to the reference, there is an indel after it, we mark it as unmatched. The two
deep blue bases ‘G’ and ‘T’ are modifications compared to the reference, so
they are marked 0 in the bitmap and recorded in the non ref.

The alignment process reduces the sequence’s size signif-
icantly but does not handle the quality scores. The quality
scores have the exact same length as the sequence and thus
take around half of the storage space. Because the quality
scores are more random and there is no reference for such
scores, we apply lossless compression methods in the segmen-
tation step to reduce their sizes. The read names are usually
short and do not take much space. We will just save them
unchanged or ignore them depending on user requirements.

D. Segmentation

The segmentation process connects short map results to
form a single aggregated segment for better lossless compres-
sion. The sequence and quality will be handled separately.

In sequence segmentation, we can further reduce the refer-
ence position storage by using the difference between positions
(delta) when possible. For example, when two reads have quite
close reference positions—the first read’s reference position
is 14340909 and the second read’s position is 14340997—the
delta is just 88, and therefore we can use fewer bits to store the
delta compared to the primary position. Moreover, for paired

FASTQ files, each Map Result stores two related reads r1
and r2, which usually form a reverse complement pair. We
will switch the forward read’s result to r1 so there is a higher
chance for delta to be valid in the following segmentation
process.

For quality segmentation, we use bin-quantization, dominant
bitmaps, or Huffman coding to reduce their size. In each
Map Result, the quality scores are a string of the read’s
length. According to the FASTQ format, there are 94 possible
characters (from 0x21 to 0x7e) in total for each score. We
propose a dominant bitmap solution as illustrated in Fig. 9 to
handle this situation. The idea is to use a bit instead of a byte
to store each dominant quality and let the dominant quality be
further compressed by a lossless compression algorithm such
as the run-length algorithm. Moreover, it is possible to cluster
the scores together to form fewer quality scores if the user
allows a less fine-grained quality. We call this method bin-
quantization. In reality, sequencing platforms such as Illumina
[16] only provide fewer than 10 different quality scores. In this
case, Huffman coding has excellent compression performance
and is fast to complete.

! ! G % % %! %G
0 1 2 3 4 5 6 7 8 9 10 11 12

%
13

F !!!Original

Step 1

Dominant

%

Dominant Bitmap After Step 1

0 0 0 1 1 10 10
0 1 2 3 4 5 6 7 8 9 10 11 12

1
13

0 000

Dominant Length 14

Quality Score Sequence After Step 1

! ! G!G
0 1 2 3 4 5 6 7 8

F !!!

Step 2

Dominant

!

Dominant Bitmap After Step 2

14 15 16 17 18 19 20 21 22

Dominant Length 14
Final Quality Sequence Stored

GG
0 1 2

F 9

1 1 010 0 1111
13

lengthen the bitmap from step 1

 Original Quality Score Sequence

Fig. 9. Dominant quality bitmap generation: when a quality score is dominant
over others, we use 1 to mark them and remove them in the quality score
sequence. We continue to find a dominant quality score in the remaining
sequence and repeat the process. In the end, only a few non-dominant qualities
will remain in the sequence. We store a bitmap, a dominant length array, a
dominant quality array, and the remaining quality sequence.

E. Lossless Compression
Many fields in our segmentation process can be further com-

pressed by general-purpose lossless compression algorithms
such as Zstd [33] and Zpaq [34]. The lossless compression
mainly deals with repeated patterns such as a long sequence
of 1s or 0s in our bitmaps. Since these compressors compress
a stream of bytes, we consider them as a black box to reduce
field sizes. However, it is worth noting that these compres-
sors have to store some additional header information during
compression and thus do not necessarily reduce the sizes for
certain fields. Therefore, we need to be wise in selecting
compressors or ignoring any compressors when dealing with
different fields.

5

Header

Header Size

Chunk Starting
Positions

0
1
2
3

address 0
address 1
address 2
address 3

Chunk Header

Chunk Header Size

Compressed
Sequence Segmentor

seq_bitmap
genome_pos

delta_pos
primary_flag

negative_delta
switch_r1r2

non_ref
r1_len
r2_len

r1_strand
r2_strand

Compressed Quality
Segmentor

quality_seq
dominant_length

dominant_qualities
dominant_bitmap

Compressed Name
Segmentor

read_name
comment

Chunk Table
Address

Other Chunks

Number of
Chunks

Fig. 10. Compressed file structure: each chunk independently compresses its
content, and provide a chunk total size to the main thread. The main thread
will record each chunk’s starting position, and save a table at the end of the
file.

We design a compressor selection process on a test chunk
to determine which compressor with which level best fits a
certain field. The selection process takes both the compression
time and compression ratio into consideration. It calculates
a score based on each compressor’s performance on the test
chunk and selects the best compressor for each field. This
selection process is pure overhead for the overall compres-
sion, and thus, we use a relatively small test chunk and fix
the compressor selection for the actual compression process.
During our evaluations, we found that, in general, Zstd [33]
is most suitable for the sequence segmenter’s field, and BSC
[35] is most suitable for the quality segmenter’s field when
considering both compression time and ratio. Zpaq [34] is
the best at compression ratio, but it is several times slower
compared to other compressors.

We illustrate our final compressed file structure in Fig. 10.
The file header has a fixed length and will be written at the
beginning of the compression. It stores metadata such as the
FastqZip version, whether the read names are kept, whether
Gzip [3] will be used in decompression, the sequence mode
(single or paired), and so on. The chunk table address can only

be known after all chunks have been compressed and written
to disk. The writer thread will write the chunk table and then
move the file pointer back to write the chunk table address.
After the chunk table address is written, the whole compressed
file is successfully stored on disk. Each chunk has its own
header so that it can be independent of other chunks for better
parallelism. The chunk header stores the number of elements
and the compressed size for each field. The sequence segment
has 11 fields, while the quality segment has four fields or just
one field if Huffman coding is used to replace the dominant
bitmap solution. The name segment stores the read names and
comments if the read names are selected to be kept.

V. EVALUATION

In this section, we present the testbed and performance
evaluation results of our reference-based genome compres-
sion algorithms. We evaluate the (de)compression time and
compression ratio on several real-world genome sequencing
datasets and compare the performance against four state-of-
the-art algorithms.

A. Experimental Settings

We evaluate methods on four datasets from publicly avail-
able genome sequencing experiments: CNP0003660 [36],
CNP0003664 [37], CNX0048124 [38], CNX0547764 [39],
and on a standard dataset BGISEQ500 [40] published by
the National Library of Medicine. Each contains sequencing
results for the human genome sample NA12878 on a different
platform and/or with different sequencing lengths. All results
are stored in FASTQ files, and each dataset contains a pair
of FASTQ files. We use the same reference sequence for all
datasets during (de)compression. A more detailed description
of the datasets is in TABLE I.

TABLE I
GENOME DATASETS FOR COMPRESSION

Dataset Platform Length Size
E100024251 L01 104 [36] DNBSEQ-T7 PE150 18+20GB
CL100076243 L01 [40] BGISEQ-500 PE100 54+55GB
E100030471QC960 L01 [39] DNBSEQ-T7 PE100 50+52GB
MGIEasyRNA4 [38] DNBSEQ-G400 PE150 5.5+5.7GB
S200032449 L01 [37] DNBSEQ-G50 PE100 28+27GB

For time evaluations, we conduct all (de)compression oper-
ations on the Elastic Computing Services (ECS) on Alibaba
Cloud as shown in TABLE II. As our algorithm exploits
multi-threading, we evaluate it on ECS instances with different
number of cores and analyze its scalability.

ecs.c7se.4xlarge is one of the most cost-effective machines
available on Alibaba Cloud, and thus, we perform most of our
evaluations on this machine. The NAS disk is much cheaper
compared to the ESSD. However, the disk speed can be a
bottleneck when using more CPU cores. Therefore, we tested
on a more powerful machine with 128 CPU cores and 512GB
memory to find the scalability limit. We report the results of
more detailed evaluations later in this section.

6

TABLE II
ECS MACHINE DESCRIPTIONS

ECS Type CPU Memory Disk
ecs.c7se.4xlarge 16 cores, Intel(R)

Xeon(R) Platinum
8369B CPU @
2.90GHz

32GB NAS Maximum
100MB/s

ecs.g7.32xlarge 128 cores, Intel(R)
Xeon(R) Platinum
8369B CPU @
2.70GHz

512GB NAS Maximum
100MB/s, ESSD
PL3 Maximum
4000MB/s

B. Compression Performance Evaluation

For compression performance evaluation, we record the
compression ratio (CR), (de)compression CPU time, and
(de)compression wall time on five datasets, and compare
FastqZip with the state-of-the-art genome sequence compres-
sion algorithms.

GTZ Spring Fastqzip Genozip
Compressor Name

0

250

500

750

1000

1250

1500

1750

Co
m

pr
es

s W
al

l T
im

e
(s

)

GTZ Spring Fastqzip Genozip
Compressor Name

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
m

pr
es

sio
n

Ra
tio

Fig. 11. Compression time and ratio comparison for FastqZip and three other
compression algorithms. The dataset is the first file of E100024251 L01 104,
the compression is lossless, and each algorithm is specified to use 16 threads
on the ecs.c7se.4xlarge machine.

We run the compression on a single dataset to roughly
select the compressors to compare with. As shown in Fig. 11,
Spring [26] compresses more slowly and achieves a lower
compression ratio than the other methods, and thus we do not
consider it further in the following. GTZ [19] is fast but has
a lower compression ratio. It has a bug in paired FASTQ file
compression and we could not get the customer support in a
timely manner. We also tested FQSqueezer [27], but it requires
more than 100GB memory and over 5000s compression time
for a 300M small FASTQ file. We then tested it on the 512GB
memory machine, and it stuck forever with lower than 5% of
the CPU utilization for the E100024251 L01 104 dataset. It is
clearly too slow compared to other algorithms, and therefore,
we give up on it. The LW-FQZip2 [18] has errors in building
their program. We fixed their compiling errors but it still has
segmentation errors when running compression. Also, they did
not provide a way to specify the output filename which is super
hard to use in an automated pipeline. After much trial and
error, we conclude that the best existing genome compression
algorithm is Genozip [8] in terms of project completeness,
ease of use, compression ratio, and compression speed. We

present detailed comparison results with Genozip later in this
section.

As shown in TABLE III, our algorithm has a better com-
pression ratio in all datasets compared to Genozip while
having a slightly slower (de)compression time. The CR is the
compression ratio calculated against the gzipped FASTQ files.
We show that the compression is slower mainly due to the
quality score compression— by using Huffman coding on the
quality scores, our algorithm has a faster (de)compression time
over most of the datasets. The reason lies in the length of the
dominant bitmap. It can be extremely long when there are
multiple rounds of dominant quality selections. We need to
iterate through longer than the whole quality score sequence
to mark ‘1’s and ‘0’s in the bitmap. More importantly, the
lossless compression algorithm needs to go over such a long
sequence to find patterns and further compress them. This
process can be either faster with a lower compression ratio or
slower with a higher compression ratio. We applied the BSC
[35] algorithm for the final lossless compression to achieve
a high compression ratio with a relatively short amount of
time. We also tried applying the same BSC algorithm to the
Huffman coding. The time cost and compressed size would be
very similar for these two FastqZip approaches: the Huffman
method would be around 1.5% faster, while the compression
ratio has only a difference under 0.5% between the two. If
we change this algorithm to ZPAQ [34], the compression
ratio can get slightly higher but it requires significantly longer
compression time.

index0.05%

align
53.19%

sequence 2.89%

quality
43.88%

Dominant Bitmap

index0.1%

align
83.0%

sequence
4.4% quality12.5%

Huffman

Time Cost
index
align
sequence
quality

Fig. 12. The time cost percentage for each stage in the lossless FastqZip
compression pipeline: ‘index’ represents the index loading stage, ‘align’
represents the sequence alignment stage, ‘sequence’ represents the sequence
segmentation stage, and ‘quality’ represents the quality segmentation stage.

We also evaluate the time cost and compressed size for
each stage to find out whether the computing resources are
spent on the right part. The results are recorded in TABLE IV
and TABLE V. As shown in Fig. 12, the aligner and quality
segmentation stages take the majority amount of time during
compression for our dominant-quality algorithm, while the
Huffman algorithm introduces very little time for quality score
compression and thus makes the alignment takes over 80% of
the time. Moreover, TABLE V shows that the quality scores
actually take up the majority of space (over 80%) in the
compressed file. In theory, because of our index structure and
local alignment mechanism, our alignment process would take
longer compared to Genozip’s method. A longer search time
and more thorough sequence comparison against the reference
lead to a higher compression ratio for the sequence part. The

7

TABLE III
LOSSLESS COMPRESSION PERFORMANCE COMPARISON AGAINST GENOZIP

Tool Dataset CR Compress CPU Time Decompress CPU Time

FastqZip
Quality
Huffman

E100024251 L01 104 2.93 151m48s 94m20s
MGIEasyRNA4 1.91 175m6s 26m19s
S200032449 L01 2.32 163m8s 148m9s
CL100076243 L01 2.23 417m17s 251m15s
E100030471QC960 L01 2.30 522m16s 245m31s

FastqZip
Dominant
Bitmap

E100024251 L01 104 3.37 237m31s 167m36s
MGIEasyRNA4 2.04 213m50s 55m42s
S200032449 L01 2.33 378m32s 295m27s
CL100076243 L01 2.44 827m17s 517m9s
E100030471QC960 L01 2.54 905m55s 489m40s

Genozip

E100024251 L01 104 3.14 160m28s 100m14s
MGIEasyRNA4 2.02 88m46s 33m5s
S200032449 L01 2.30 151m1s 125m7s
CL100076243 L01 2.33 572m5s 303m54s
E100030471QC960 L01 2.45 526m43s 281m14s

TABLE IV
TIME COST IN SECONDS FOR EACH STAGE IN THE FASTQZIP ALGORITHM

Tool Dataset Index Align Sequence Quality

FastqZip
Dominant
Bitmap

E100024251 L01 104 7 7013 417 5276
MGIEasyRNA4 10 9784 315 2642
S200032449 L01 12 8487 614 10,687
CL100076243 L01 11 23 1363 20
E100030471QC960 L01 12 28 1411 24

FastqZip
Quality
Huffman

E100024251 L01 104 7 5998 350 1413
MGIEasyRNA4 12 9725 300 370
S200032449 L01 12 6338 484 814
CL100076243 L01 14 18 1071 1975
E100030471QC960 L01 15 22 1060 4696

TABLE V
ORIGINAL SIZE AND COMPRESSION % FOR SEQUENCE AND QUALITY DATA WHEN LOSSLESSLY COMPRESSED WITH XXX

Sequence data Quality scores
Tool Dataset Size (GB) Compression % Size (GB) Compression %

FastqZip
Dominant
Bitmap

CL100076243 L01 5.63 11.87 41.8 88.13
E100024251 L01 104 1.32 11.29 10.3 88.71
E100030471QC960 L01 4.54 10.61 38.2 89.39
MGIEasyRNA4 1.02 17.41 4.82 82.59
S200032449 L01 2.37 9.62 22.3 90.38

FastqZip
Quality
Huffman

CL100076243 L01 5.63 10.84 46.3 89.16
E100024251 L01 104 1.32 9.82 12.1 90.18
E100030471QC960 L01 4.54 9.63 42.6 90.37
MGIEasyRNA4 1.02 16.30 5.22 83.70
S200032449 L01 2.37 9.57 22.4 90.43

result indicates that we have done a great job in sequence
compression. To further reduce the file sizes, it makes more
sense for us to focus on reducing the size of the quality scores.
But because the quality scores consisted of relatively random
values, there is no reference for such values to be compactly
compressed. Since most downstream analysis programs only
need the sequence values or do not require super accurate
quality scores, we refer to lossy compression for a higher
compression ratio.

We conduct lossy compression to quality scores by grouping
quality scores into fewer classes. “N bins” means we select the
N most popular quality scores and transform all the rest quality
scores into the N scores according to their distance. Fig. 13
shows that by applying quality score clustering, the dominant
bitmap method spends less time on compressing the quality

index0.07%

align
71.83%

sequence
3.77% quality

24.33%

Dominant Bitmap

index0.1%

align
73.6%

sequence
3.9% quality

22.5%

Huffman-BSC

Time Cost
index
align
sequence
quality

Fig. 13. The time cost percentage for each stage with lossy quality scores
(clustered to 8 bins). The Huffman-BSC means a BSC algorithm is applied
after Huffman.

scores, resulting in faster compression. TABLE VI shows that
the quality bin clustering is effective in both algorithms and

8

TABLE VI
SIZE REDUCTION ACHIEVED VIA QUALITY SCORE COMPRESSION AFTER APPLYING BIN CLUSTERING

Original Compressed Reduction Overall
Tool Dataset Size Size % CR

FastqZip
Dominant
Bitmap

CL100076243 L01 4.18E+10 1.70E+10 59.43 5.13
E100024251 L01 104 1.03E+10 3.04E+09 70.61 9.01
E100030471QC960 L01 3.82E+10 1.30E+10 66.11 6.20
MGIEasyRNA4 4.82E+09 1.90E+09 60.67 4.09
S200032449 L01 2.23E+10 1.01E+10 54.45 4.60

FastqZip
Quality
Huffman
+ BSC

CL100076243 L01 4.63E+10 1.72E+10 62.75 5.06
E100024251 L01 104 1.21E+10 3.08E+09 74.56 8.94
E100030471QC960 L01 4.26E+10 1.30E+10 69.45 6.18
MGIEasyRNA4 5.22E+09 1.92E+09 63.31 4.10
S200032449 L01 2.24E+10 1.01E+10 54.75 4.60

can reduce more than 50% of storage space requirement. By
applying a BSC compression after the Huffman coding, these
two approaches have very similar compression performance.
The similar performance also suggests that we probably have
already reached the limit of quality score compression. Other
than using very few quality bins (the extreme case is just one
bin, and we basically ignore the quality scores) or obtaining
some additional information from the sequencing process(like
if there is some pattern for the quality score distribution using
some specific sequencing method), there is not much room to
improve the compression ratio over the quality scores.

C. Resource Consumption Analysis
The memory and CPU usage of FastqZip is mainly deter-

mined by the number of threads and the read number for each
chunk. It is important to know the memory usage character-
istics to give an appropriate setting. An unmatched setting
can lead to memory allocation failure or underutilization of
CPU resources. In this section, we evaluate the memory con-
sumption and CPU utilization of FastqZip to better understand
how we should set these two hyperparameters to maximize the
compression performance.

Our experiments show that an appropriate read number
setting can ensure that memory consumption does not exceed
the physical bound. As shown in Fig. 14, by setting the read
number of each chunk to 100,000, the memory consumption
is between 50% and 60% (around 19GB) even if we utilize
all CPU resources. If we have less memory—say 16GB—we
can either reduce the number of threads or set a smaller read
number per chunk. A smaller read number can ensure that
the program does not fail due to memory allocation errors,
but can also increase the total number of chunks, resulting
in a slight increase in compressed size due to the chunk
header. But because the chunk header size is usually negligible
compared to the chunk content size, we usually do not need
to optimize the compression ratio through read numbers— the
chunk header is fixed to 100 bytes, while the chunk content
consists of tens of thousands of reads. To be more specific,
we assume putting 10,000 reads in one chunk. The 10,000
reads contain 1,000,000 bases and quality scores, and even
with a (typically unrealistically high) compression ratio of
50, the chunk content would still be around 40,000 bytes and
the chunk header would take just 100/40000 = 0.25% of the

0 100 200 300 400 500 600
Time (s)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 %

(A) 8 threads compression, 100000 reads in one chunk
Memory Usage Percentage
CPU Usage Percentage

0 100 200 300 400 500 600
Time (s)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 %

(B) 16 threads compression, 100000 reads in one chunk

Memory Usage Percentage
CPU Usage Percentage

0 100 200 300 400 500 600
Time (s)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 %

(C) 20 threads compression, 100000 reads in one chunk

Memory Usage Percentage
CPU Usage Percentage

Fig. 14. Memory and CPU usage during FastqZip compression. Tests are
run on a ecs.c7se.4xlarge cloud server with 16 CPUs and 32GB memory; the
dataset is E100024251 L01 104.

space. When we compress 100,000 reads in a chunk, the same
assumed compression ratio yields a header taking only 0.025%
of the space. Nonetheless, when the memory is enough, we
recommend a larger chunk for this small optimization with no
harm.

On the other hand, our algorithm is capable of fully utilizing
computing resources with an appropriate number of threads.
Fig. 14 (B) shows that by setting the thread number to 16
(the number of available CPUs), each worker can take up one
CPU core and reach over 90% of CPU utilization. The slight
oversubscription shown in Fig. 14 (C) does not increase the
CPU utilization more while having some troughs that drop
to 65% of utilization. We can safely conclude that setting
the thread number to the number of CPU cores available can
utilize the computing resources well enough.

D. Scalability Evaluation

When we increase the number of CPUs for (de)compression,
the (de)compression wall time should decrease and the

9

throughput should climb up because of parallelism. But at
some point, the I/O can be a bottleneck. Because we need
to decompress the Gzipped raw file to read the content before
compression, the read thread may soon be too slow to get the
data for hundreds of worker threads to do the compression
parallelly. In this section, we evaluate the parallel scalability
of FastqZip on the selected Alibaba Elastic Computing Ser-
vices to see if the (de)compression wall time can continue
decreasing with more and more CPU cores.

2 4 8 12 16 20
Number of Threads

0

1000

2000

3000

4000

5000

Ti
m

e
(s

)

fastqIO read time
total compression time
I/O wait computation time

Fig. 15. Scalability evaluation of FastqZip: The evaluation is performed on
ecs.g7.32xlarge with sufficient CPUs and memory.

As shown in Fig. 15, FastqZip scales pretty well when
there are fewer than 16 threads. The I/O wait computation
time decreases to 0 when there are 20 threads, meaning the
I/O has been too slow to provide enough data for so many
threads to consume. If the I/O is faster than the computation,
the read buffer will build up to full and the I/O has to wait
for the computation to finish to continue reading data. The
total compression time converges with fastqIO read time when
enough threads are provided. No further speed-up is possible
other than having a faster I/O because the limit is to read all
the data in and the compression just finishes in no time.

VI. CONCLUSIONS & FUTURE WORK

We developed a novel genome sequence compression frame-
work FastqZip, which consists of indexing, sequence align-
ment, segmentation, and lossless compression modules. We
proposed a better sequence alignment approach that matches
the reads with insertions and deletions so that more reads can
be compressed by aligning them to the reference sequence.
Based on our evaluations of five real-world DNA and RNA
sequencing datasets, we report the following key findings:

• The proposed alignment search algorithm can further re-
duce the sequence size in the compressed file and reaches
a compression ratio that is better than the state-of-the-
art genome sequence compression algorithms, including
Genozip [8].

• The quality scores take up over 80% of storage space in
the compressed file, and if they can be lossy compressed,
the compression ratio can be around 2X higher.

• We use two different algorithms, Dominant Bitmap and
Huffman, to compress the quality scores and they reach
very similar performance when using the BSC lossless
compression algorithm at the end, meaning that the
compression of quality scores under the current approach
has reached its limit.

• Our algorithm has great scalability and memory con-
sumption characteristics that can ensure the memory
consumption does not exceed the physical limit while
utilizing all CPU resources.

For future work, we notice that the compression ratio
and speed are heavily influenced by the selected lossless
compression algorithm. For instance, ZPAQ [34] yields the
best compression ratio but it is 10X slower, while the ZSTD
[33] algorithm is fast but has a relatively low compression
ratio. We selected the BSC [35] algorithm to serve as a
compromise solution that is relatively fast speed and achieves a
high compression ratio. We think there is still room to improve
on the lossless compression algorithm, considering the special
patterns in our bitmaps. Also, since our algorithm allows
each chunk to be compressed independently, there is room
to accelerate compression with a GPU. We plan to investigate
GPU and FPGA acceleration in future work.

ACKNOWLEDGMENT

We would like to extend our gratitude to BGI Genomics
for sharing their public datasets for our benchmark. We are
also grateful to the University of Chicago for providing aca-
demic advice. The collaboration among Alibaba Cloud, BGI
Genomics, and the University of Chicago was fundamental to
the successful execution of this study, and we are sincerely
thankful to all parties involved.

REFERENCES

[1] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M.
Rice, “The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants,” Nucleic Acids
Research, vol. 38, no. 6, pp. 1767–1771, 12 2009. [Online]. Available:
https://doi.org/10.1093/nar/gkp1137

[2] M. Hernaez, D. Pavlichin, T. Weissman, and I. Ochoa, “Genomic data
compression,” Annual Review of Biomedical Data Science, vol. 2, pp.
19–37, 2019.

[3] A. Shah and M. Sethi, “The improvised gzip, a technique for real
time lossless data compression,” EAI Endorsed Transactions on Context-
aware Systems and Applications, vol. 6, p. 160599, 06 2019.

[4] J. Gilchrist, “Parallel data compression with bzip2,” 01 2004.
[5] B. Chern, I. Ochoa, A. Manolakos, A. No, K. Venkat, and T. Weissman,

“Reference based genome compression,” IEEE Inf Theory Workshop,
ITW, 04 2012.

[6] C. Kingsford and R. Patro, “Reference-based compression
of short-read sequences using path encoding,” Bioinformatics,
vol. 31, no. 12, pp. 1920–1928, 02 2015. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btv071

[7] G. D. y Álvarez, G. Seroussi, P. Smircich, J. Sotelo-Silveira,
I. Ochoa, and Á. Martı́n, “Renano: a reference-based compressor
for nanopore fastq files,” bioRxiv, 2021. [Online]. Available:
https://www.biorxiv.org/content/early/2021/06/01/2021.03.26.437155

[8] D. Lan, R. Tobler, Y. Souilmi, and B. Llamas, “Genozip: a
universal extensible genomic data compressor,” Bioinformatics,
vol. 37, no. 16, pp. 2225–2230, 02 2021. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btab102

10

[9] International Human Genome Sequencing Consortium, “Initial sequenc-
ing and analysis of the human genome,” Nature, vol. 409, p. 860–921,
2001.

[10] M. Sardaraz, M. Tahir, A. A. Ikram, and H. Bajwa, “Seqcompress:
An algorithm for biological sequence compression,” Genomics,
vol. 104, no. 4, pp. 225–228, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0888754314001499

[11] U. Ghoshdastider and B. Saha, “Genomecompress: A novel algorithm
for dna compression,” 2007.

[12] A. K. Gupta and U. Gupta, “Chapter 20 - next generation
sequencing and its applications,” in Animal Biotechnology
(Second Edition), 2nd ed., A. S. Verma and A. Singh, Eds.
Boston: Academic Press, 2020, pp. 395–421. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128117101000185

[13] L. Hood and R. L., “The human genome project: big science transforms
biology and medicine.” Genome Med, 2013.

[14] W. Gilbert and A. Maxam, “The nucleotide sequence of the
¡i¿lac¡/i¿ operator,” Proceedings of the National Academy of
Sciences, vol. 70, no. 12, pp. 3581–3584, 1973. [Online]. Available:
https://www.pnas.org/doi/abs/10.1073/pnas.70.12.3581

[15] C. A. Sanger F, Nicklen S, “Dna sequencing with chain-terminating
inhibitors,” Proc Natl Acad Sci U S A., 12 1977.

[16] S. R. et al., “High-throughput snp genotyping on universal bead arrays.”
Mutat Res., pp. 70–82, 06 2005.

[17] Y. Zhang, L. Li, Y. Yang, X. Yang, S. He, and Z. Zhu, “Light-
weight reference-based compression of fastq data,” BMC bioinformatics,
vol. 16, pp. 1–8, 2015.

[18] Z.-A. Huang, Z. Wen, Q. Deng, Y. Chu, Y. Sun, and Z. Zhu, “Lw-
fqzip 2: a parallelized reference-based compression of fastq files,” BMC
bioinformatics, vol. 18, pp. 1–8, 2017.

[19] Y. Xing, G. Li, Z. Wang, B. Feng, Z. Song, and C. Wu, “Gtz: a fast
compression and cloud transmission tool optimized for fastq files,” BMC
bioinformatics, vol. 18, no. 16, pp. 233–242, 2017.

[20] G. Benoit, C. Lemaitre, D. Lavenier, E. Drezen, T. Dayris, R. Uricaru,
and G. Rizk, “Reference-free compression of high throughput sequenc-
ing data with a probabilistic de bruijn graph,” BMC bioinformatics,
vol. 16, no. 1, pp. 1–14, 2015.

[21] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze, “Compression
of next-generation sequencing reads aided by highly efficient de novo
assembly,” Nucleic acids research, vol. 40, no. 22, pp. e171–e171, 2012.

[22] Ł. Roguski and S. Deorowicz, “Dsrc 2—industry-oriented compression
of fastq files,” Bioinformatics, vol. 30, no. 15, pp. 2213–2215, 2014.

[23] A. Dutta, M. M. Haque, T. Bose, C. V. S. K. Reddy, and S. S.
Mande, “Fqc: A novel approach for efficient compression, archival,
and dissemination of fastq datasets,” Journal of bioinformatics and
computational biology, 2015.

[24] J. Bonfield and M. Mahoney, “Compression of fastq and sam format
sequencing data,” PloS one, vol. 8, p. e59190, 03 2013.

[25] M. Nicolae, S. Pathak, and S. Rajasekaran, “LFQC: a
lossless compression algorithm for FASTQ files,” Bioinformatics,
vol. 31, no. 20, pp. 3276–3281, 06 2015. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btv384

[26] S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez, and T. Weissman,
“Spring: a next-generation compressor for fastq data,” Bioinformatics,
Aug 2019.

[27] S. Deorowicz, “Fqsqueezer: k-mer-based compression of sequencing
data,” Scientific Reports, 2020.

[28] A. Bookstein, V. Kulyukin, and T. Raita, “Generalized hamming dis-
tance,” Information Retrieval, vol. 5, 10 2002.

[29] C. Zhao, “String correction using the damerau-levenshtein distance,”
BMC Bioinformatics, 06 2019.

[30] S. Marco-Sola, J. M. Eizenga, A. Guarracino, B. Paten, E. Garrison,
and M. Moreto, “Optimal gap-affine alignment in O(s) space,”
Bioinformatics, vol. 39, no. 2, p. btad074, 02 2023. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btad074

[31] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa,
“Fast gap-affine pairwise alignment using the wavefront algorithm,”
Bioinformatics, vol. 37, no. 4, pp. 456–463, 09 2020. [Online].
Available: https://doi.org/10.1093/bioinformatics/btaa777

[32] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, R. Durbin, and . G. P. D. P. Subgroup,
“The Sequence Alignment/Map format and SAMtools,” Bioinformatics,
vol. 25, no. 16, pp. 2078–2079, 06 2009. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btp352

[33] Facebook, “Zstandard,” https://github.com/facebook/zstd/releases.
[34] M. V. Mahoney, “The zpaq compression algorithm,” 2015,

https://api.semanticscholar.org/CorpusID:13248511.
[35] M. Sardaraz and M. Tahir, “Sca-ngs: Secure compression algorithm

for next generation sequencing data using genetic operators
and block sorting,” Science Progress, vol. 104, no. 2, p.
00368504211023276, 2021, pMID: 34143692. [Online]. Available:
https://doi.org/10.1177/00368504211023276

[36] X. Hongxin, “DNBSEQT7 WES-PE150 demo data,”
https://db.cngb.org/search/project/CNP0003660/, 10 2022.

[37] ——, “MGISEQ-200 WES PE100 demo data,”
https://db.cngb.org/search/project/CNP0003664/, 11 2022.

[38] “RNA-Seq of UHRR,” https://db.cngb.org/search/experiment/CNX0048124/.
[39] “DNBSEQ-T7 WES PE150 ,” https://db.cngb.org/search/experiment/CNX0547764/.
[40] “BGISEQ500 PCRfree NA12878 CL100076243 L01,” https://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/BGISEQ500/.

11

