
1

Ocelot: An Interactive, Efficient Distributed
Compression-as-a-Service Platform with
Optimized Data Compression Techniques
Yuanjian Liu, Sheng Di∗, Senior Member, IEEE , Jiajun Huang, Zhaorui Zhang, Kyle Chard,

Ian Foster, Fellow, IEEE

Abstract—Large volumes of data generated by scientific simulations, genome sequencing, and other applications need to be moved
among clusters for data collection/analysis. Data compression techniques have effectively reduced data storage and transfer costs.
However, users’ requirements on interactively controlling both data quality and compression ratios are non-trivial to fulfill. We propose a
novel Compression-as-a-Service (CaaS) platform called Ocelot with four important contributions: (1) It offers real-time visualization,
interactive compression, and transfer of scientific datasets. (2) It incorporates new strategies for compressing diverse types of datasets
more effectively than traditional methods. (3) It provides an effective method for estimating the compression ratio and execution time of
compression tasks. (4) Experiments on multiple real-world datasets on geographically distributed computers show that Ocelot can
significantly improve data transfer efficiency with a performance gain of more than 10x in computing clusters with relatively slow
networks.

Keywords—compression as a service (CaaS), data transfer, genome sequence compression, floating-point tensor compression

✦

1 INTRODUCTION

Many scientific applications generate significant volumes of
data that must be moved among geographically distributed
sites. For example, particle accelerators such as Advanced
Photon Source (APS) [1] generate data at up to 250 GB/s.
Next-generation sequencing platforms such as DNBSQ-T20
can produce 22 TB of sequence per day. Molecular Dynamics
(MD) simulations [2] that simulate 20 trillion particles in a
long trajectory can generate 10 PB. Recent large language
models such as Grok-1 grow to more than 380 GB. Most
such data need to be moved to other computing clusters or
personal computers for further analysis, model inference,
or storage. Tools like Globus [3], [4], widely adopted on
computing facilities (e.g., supercomputers) can accelerate
transfer, but with such enormous datasets, transfer times
can still be very long.

Many lossless and lossy compressors have been devel-
oped to address the big data issue. However, they cannot
be employed directly or effectively for remote parallel data
transfer tasks due to the following substantial drawbacks.

Limited/missing support for multi-node parallel com-
pression. Off-the-shelf error-bounded lossy compressors
lack efficient support for using processors on different com-

* Sheng Di (sdi@anl.gov) is the corresponding author.

• Yuanjian Liu and Kyle Chard are with the Department of Computer
Science at the University of Chicago, Chicago, IL 60601, USA.

• Sheng Di is with the Mathematics and Computer Science Division at
Argonne National Laboratory, Lemont, IL 60439, USA.

• Jiajun Huang is with University of California - Riverside, Riverside, CA,
92521, USA.

• Zhaorui Zhang is with Department of Computing, The Hong Kong
Polytechnic University, Kong Kong.

• Ian Foster is with both Argonne National Laboratory and the University
of Chicago, Chicago, IL 60601, USA.

pute nodes, which may significantly limit their parallel com-
pression performance. On the one hand, the vast volume of
data produced by many applications necessitates parallel
compression across multiple nodes to complete the process
within a reasonable time frame. On the other hand, the
memory capacity of a single node is typically inadequate
for most existing compression algorithms to handle some
extremely large data files. To enable large file compression
on multiple nodes, the algorithm should work with an
efficient method that can split the files appropriately and
coordinate processors on different compute nodes.

Unable to meet users’ diverse requirements for com-
pression quality. Although error-bounded lossy compres-
sors have been effective in many applications, existing com-
pressors are developed/driven based on relatively simple
error control methods such as absolute error bound, in-
evitably leaving a significant gap in user requirements on
the reconstructed data quality. Users often need to visualize
the reconstructed data to determine whether they are valid
in practice. Error-bounded lossy compressors, however, may
introduce undesired artifacts in the reconstructed data,
which is a non-trivial issue as the artifacts are related to
many factors such as datasets, compressor design, error-
bound types, and values. As such, enabling users to interac-
tively check the quality of compression in real time and ad-
just compression parameters timely is a substantial feature
to guarantee user requirements on compression quality.

Limited/missing support for diverse types of
datasets/files. In the data repositories, there are diverse
types of scientific datasets. While the existing error-bounded
compressors are suitable for many simulation datasets, they
are not suitable for other types of data. For example, genome
sequence data consist of text-based sequence identifiers (e.g.
ATCGGC...), which cannot be well compressed by con-



2

ventional error-bounded lossy compression or binary-level
lossless compression. Based on biological DNA similarity,
dedicated reference-based compression algorithms can be
much more efficient in this situation. Moreover, we note
some inefficiency in the sequence alignment process and
the compression of the quality score of existing genome
sequence compressors such as Genozip [5]. On the other
hand, existing error-bounded compressors such as SZ [6],
[7] and ZFP [8] are not qualified for parallel (de)compression
of very large files each of which is composed of one single
tensor (or variable).

To address the above issues (also challenges),
we develop a Compression-as-a-Service (CaaS) plat-
form, Ocelot 1, for running optimized data compres-
sion/decompression/transfer tasks across multiple wide
area network (WAN)-connected sites. Ocelot allows users to
orchestrate remote tasks from their personal computers via
a universal graphical interface. It supports multiple diverse
lossy/lossless compressors including Gzip, Zstd, SZ3, ZFP,
and our optimized genome data compressor. It also features
an extensible module to support/plug more compressors
easily on the CaaS platform.

The key contributions of this paper are as follows:

• We develop a CaaS framework, Ocelot, facilitated
with Globus service and function-as-a-service (FaaS)
techniques and with a universal graphical user inter-
face for interactive control of compression/transfer
among compute clusters.

• We propose a novel reference-based genome se-
quence compression algorithm with an improved
sequence alignment technology and quality score
compression method.

• We develop an efficient mechanism allowing users
to interactively set multiple error bounds at different
value ranges or regions for floating point tensors,
which is critical to meeting diverse user require-
ments.

• We develop an efficient multi-node compression
method with a layer-by-layer technique, to compress
extremely large tensors/files that could not fit into
memory, which is the first attempt to the best of our
knowledge.

• We conduct experiments and benchmarks on mul-
tiple real-world datasets and demonstrate Ocelot’s
powerful capability to efficiently orchestrate data
compression/transfer across heterogeneous super-
computers/clusters over WAN. Experiments show
that the performance improvement exceeds 10x
when transferring data from supercomputers to typ-
ical cloud computing clusters.

The rest of the paper is organized as follows. In Section
2, we discuss the research background and related work.
In Section 3, we discuss our motivation and describe the
design of our framework. In Section 4, we describe our pro-
posed compression algorithms for genome sequence data
and large floating-point tensors. In Section 5, we evaluate
Ocelot on real-world scientific datasets, demonstrate the

1. The source code for Ocelot is available at https://github.com/
legendPerceptor/Ocelot

performance of our proposed compression algorithms, and
show Ocelot’s orchestration of compression/transfer among
multiple clusters. Finally, we conclude the paper with a
discussion of future work in Section 6.

2 BACKGROUND AND RELATED WORK

Floating-point datasets/tensors are the major outputs of
scientific applications and also represent the most substan-
tial storage demand within deep learning models. Human
genome sequences are also emerging as a common data type
within computational facilities, with the prospect of afford-
able DNA sequencing for the masses on the horizon. This
section explores the latest advancements in data storage and
compression technologies for these data types, alongside
recent initiatives to streamline the orchestration of remote
tasks.

2.1 Error-bounded Lossy Compression
Error-bounded lossy compression techniques have emerged
as indispensable tools for significantly reducing data vol-
umes in floating-point tensors. These techniques play a
crucial role in minimizing storage requirements, as evi-
denced by their applications in diverse domains such as
molecular dynamics simulations [9], quantum computing
[10], [11], and supercomputing environments [12]. By ef-
ficiently compressing data while ensuring that the error
introduced during compression remains bounded, these
methods can not only mitigate memory demands but can
also alleviate I/O expenses in high-performance computing
settings. Furthermore, they can eliminate the need for costly
data recomputation [13]. Broadly speaking, error-bounded
lossy compression models can be categorized into two main
types: transform-based and prediction-based. The former
involves applying transformations, such as wavelet trans-
forms, to decorrelate raw data and subsequently employing
specific encoders, such as embedded encoding techniques
[8], to reduce coefficient data. On the other hand, prediction-
based models utilize data predictors and linear-scale quanti-
zation to decorrelate datasets, followed by the application of
variable-length encoding methods like Huffman encoding
[14] and dictionary encoding such as LZ77 [15], to achieve
high compression ratios. Prominent examples of prediction-
based techniques include SZ [16], [17] and MGARDx [18].

2.2 Compression Performance Prediction
Knowing the expected compression ratio, quality, and time
beforehand can be very beneficial for scientific workflows.
Many previous works tried either white-box or black-
box methods to predict the compression performance. The
white-box methods usually do part of the compression and
collect data from the compressor to predict the final com-
pression performance. For example, Tao [19] developed a
white-box method that samples data, estimates the probabil-
ity density function of the data in the blocks and computes
the entropy of the quantize values to derive a metric for
compressibility. Jin’ method [20] collects the distribution of
quantization bins and uses a fixed formula with two tunable
parameters to calculate the predicted compression ratio for
SZ3. The existing white-box methods can be efficient but

https://github.com/legendPerceptor/Ocelot
https://github.com/legendPerceptor/Ocelot


3

cannot fit to all datasets and variations of the compressors.
The black-box methods use data-centric features and pre-
dictors that are not derived from the internal mechanism of
certain compressors. For instance, [21] extracts compressor-
agnostic data features to determine the corresponding error
bound for a target compression ratio. [22] and [23] compute
statistical features derived from data including spatial diver-
sity, spatial correlation, general distortion measurement, etc.
to model the ease of compression on each dataset. Then they
use the calculated features with a regression model to fit
each compressor. The problem is that their selected features
are quite expensive to compute. These methods are good in
offline use cases but can be too heavy for optimizing the
overall transfer time with compression. Therefore, we pro-
pose a method that combines compressor-related features,
data-related features, and compressor configuration features
for a fast and relatively accurate compression performance
prediction for the SZ3 series of compressors.

2.3 Reference-based Sequence Compression
Raw sequencing data are typically stored in FASTQ for-
mat [24]. A FASTQ file consists of a separate entry for each
short sequence, consisting of four lines: an identifier string, a
nucleotide sequence (the read), the character ’+’, and quality
scores. The identifier string contains information about the
sequencing technology and other metadata obtained from
the sequencing machine, which uniquely describes a read.
The nucleotide sequence is a string of A, C, G, T, and N
characters representing the bases (base-pairs) of the DNA
sequence. The quality scores record the confidence of each
base generated by the sequencing machine.

Existing FASTQ sequence compression algorithms can
be categorized into two classes: reference-based and
reference-free algorithms. Reference-based algorithms map the
nucleotide sequences in a FASTQ file to a reference genome
and use the mapped positions to encode the sequences.
Examples include LW-FQZip [25], LW-FQZip2 [26], GTZ
[27], and genozip [5]. Reference-free algorithms are used when
a reference genome is not available. For example, Leon [28]
and Quip [29] use assembly-based algorithms. Generally,
reference-based compressors perform better in terms of both
compression time and ratio than reference-free compressors,
and thus we focus on developing a reference-based algo-
rithm for FASTQ compression.

2.4 Remote Task Orchestration
The cloud-based Function-as-a-Service (FaaS) paradigm
supports transparent remote function execution and data
staging. The FaaS paradigm has been extended as a general
model for remote computing across federated resources.
Globus Compute [30] is one platform that uses FaaS as an
interface to execute remote functions across the federated
computing infrastructure. In the Globus Compute model,
users can deploy endpoints on arbitrary computers. These
endpoints are registered with the cloud-hosted Globus
Compute platform and may then be used to execute func-
tions. The cloud platform manages the secure and reliable
execution of those functions on the selected endpoints.

Data transfer is essential in modern scientific computing.
Globus Transfer is a widely used research data management

platform that enables high-performance, secure, and reliable
third-party data transfers. Globus Transfer builds upon the
GridFTP protocol for data movement and adopts several
optimization techniques such as parallel streams [31], [32],
which can significantly improve data transfer performance.
Transferring big data files with Globus Transfer, however,
may still be time consuming due to limited network paths
and underprovisioned data transfer nodes (DTNs). We aim
to improve data transfer performance with Ocelot by apply-
ing dynamic compression methods.

3 OCELOT FRAMEWORK DESIGN

In this section, we describe our motivations and the design
of the Ocelot framework.

3.1 Research Motivations and Goals
By consulting the users with real-world use-cases, we were
highly motivated by several practical scenarios for devel-
oping the Ocelot Framework. (1) Some applications require
proprietary software that is only available on a few clusters.
(2) Some compressors or analysis programs depend on
libraries that are optimized for specific architectures. For
instance, the library “libdeflate” uses Intel Advanced Vec-
tor Extensions 512 (AVX-512) and may generate assembly
instructions such as ‘vpdpbusd’ that are unavailable on
relatively old AMD processors. For the above two reasons,
data often have to be moved from one cluster to another
for compression and/or analysis. (3) Data scientists hope to
interactively compress/visualize the data so that they can
check the quality of reconstructed data online thus selecting
appropriate compression parameters in time instead of run-
ning the compression by a large batch compression script
and checking the result after a while. (4) Authentication
methods on different sites can be very different, causing
users to need help from the support team every few months
because they forget the exact authentication method for a
specific site. Some sites support RSA authentication, while
others require 2-factor authentication or a user-defined
password plus a generated temporary passcode. Having
a longer-term authenticated background program can be
beneficial for many day-to-day tasks. We aim to address the
above four problems with our Ocelot framework.

3.2 Ocelot Framework
We present an overview of Ocelot in Fig. 1, an orchestrator
that interacts with the compressors, datasets, and trans-
fer service on remote endpoints. The users interact with
Ocelot through a graphical interface as shown in Fig. 2. We
provide a fine-grained control over user-defined machines
and allow users to choose different compressors against
various datasets. Ocelot can map the datasets from multiple
clusters to a logical directory so that users do not need
to worry about the exact physical location of their desired
datasets. We use color maps to offer a data preview option
for floating-point tensors, which allow users to set multiple
error bounds according to visual results. Users can also
easily develop plugins to add their data analysis program to
the Ocelot framework. With Ocelot, data scientists no longer
need to repeatedly log in to each cluster to perform data



4

compression/analysis tasks and transfer the results back to
their personal computers for visualization.

Personal
Computer

Cluster A
Cluster B

Cluster C

Graphical Interface

Ocelot

CESM CLOUD 1800x3600 floating point tensor

Logical Dataset

Genome Sequence 1

Map

User

Genome Sequence 2

NYX 512x512x512 floating point tensor

Compress

Preview Data

Decompress

Compute Endpoint A
Compute Endpoint B

Compute Endpoint C

Compressed

Data

CompressedData

R
em

ot
e 

Fu
nc

tio
n 

C
al

l

Globus Transfer

Slow Public Network

Long-term
download

Fig. 1. Ocelot decouples the task execution from task manipulation and
provides a universal data management interface for users to compress,
transfer, analyze, and store various types of data.

Ocelot deploys long-term running endpoints on comput-
ing clusters, which gather information about datasets and
compression performance. The information helps Ocelot
predict the future compression time and determine the
busyness of each cluster. The estimated compression time
helps Ocelot decide the preallocated time for a batch job on
shared systems. The benefit of this approach compared to
the previous compression performance prediction work is
that it does not have an additional cost when users perform
a compression task. Moreover, the endpoint serves as a
convenient stable downloader that can download datasets
from the public network with a very slow transfer rate. The
long-term running endpoint avoids the stable connection
requirement to users’ devices and thus can successfully
download files for several days without encountering an
SSH connection pipeline broken error or an accidental net-
work drop that often occurs when users try to download
datasets through their laptop.

Ocelot also has a mechanism to adapt to the availability
of the compute nodes for transfer tasks that allow lossy
compression. If the estimated compression/decompression
time plus the transfer time of compressed files can benefit
the overall throughput, Ocelot will run compression first.
If a cluster cannot run the desired software, Ocelot can
automatically perform a roundtrip approach: transfer the
data to another cluster for compression and then trans-
fer compressed data to the destination. We show in the
following that due to high network bandwidths among
supercomputers, the roundtrip approach can still reduce the
total time for transferring data to cloud computing servers
or personal computers which suffer slow networks. On
supercomputers, data transfer is conducted on previously
allocated Data Transfer Nodes (DTNs) and is managed
through the Globus Transfer API. For personal computers
and cloud computing servers, users can manually set up the
endpoints and include them in Ocelot.

Fig. 2. Ocelot graphical user interface: users can control data transfer
and compression with different algorithms between configured comput-
ing clusters. All the authentications are done when configuring the end-
points. Users no longer need to repeatedly authenticate when running
jobs.

4 DIVERSE COMPRESSION APPROACHES:
GENOME SEQUENCES AND FLOATING-POINT
TENSORS

In this section, we devise two optimized compression strate-
gies under the Ocelot framework for two distinct types of
data: genome sequence and floating-point tensors.

4.1 Genome Sequence Compression

We propose a novel reference-based genome sequence com-
pression algorithm for FASTQ files. Our contribution mainly
lies in an improved sequence alignment approach, lossy
quality score compression, and Ocelot’s remote orchestra-
tion capability for such compression.

For clarification, we first describe the reference-based
genome sequence compression problem briefly. Genome
sequence matching is a process of comparing the genetic
information (DNA sequences) of different organisms to
identify similarities or differences. The ideal scenario is that
each read is just a subsequence of the reference (the exact
match), so we only need to mark the matching position for
each read. However, the sequence can have modification, in-
sertion, and deletion that complicate the matching process.
The existing algorithms often cannot match sequences with
insertions and deletions well, resulting in a lower compres-
sion ratio. We aim to improve this alignment process.

We designed a parallel architecture for the genome se-
quence compression algorithm (shown in Fig. 3) because
each read is strictly independent of others in a FASTQ file.
The architecture employs a standard producer-consumer
model, with one read thread, one write thread, and several
worker threads to perform compression. These threads are
synchronized by read and write buffers. This design allows
FastqZip to compress extremely large FASTQ files without
breaking memory limits and to achieve parallelism.

We employ a key-value map as an index for an efficient
aligment process because naive long-string comparison is



5

Read Thread

FASTQ Files (Gzipped)

Start Current

K K KK
Read Buffer

Index (In Memory)K Reads per chunk

Aligner

Index Files

Segmenter

Lossless

Worker

Aligner

Segmenter

Lossless

Worker

Write Thread

K KKWrite Buffer

Compressed File

Fig. 3. Genome sequence compression architecture: The read thread
must be sequential, but workers can proceed in parallel. The read buffer
and write buffer allow maximum parallelism for the whole pipeline.

GATCAGTTCACGTACSeed Example

Seed 1

Seed 2

Seed 3

Index Map

215

seeds positions

478 576 688 935

Start with 'G' The second is not 'G' (3) The length is seed_length

seed_length = 15

365 867 932

137 268 988 1068

Fig. 4. Index concept: we look for all valid seeds in the reference se-
quence and record their positions. There are multiple positions because
the same seed may appear multiple times in different locations on the
reference sequence.

slow. We only need to build the index once for each reference
sequence; once built, it can be loaded into memory rapidly
during compression. As depicted in Fig. 4, the short seed
sequences function as keys, and seed positions in the refer-
ence sequence serve as values. To simplify the storage of the
index file, we propose three concepts: (1) forward sequence,
(2) range index, and (3) forward index. The forward sequence
connects the reference sequences to form one long sequence,
and replaces all non-ACGT bases with ‘A’. The range index
is a fixed-length array used to store the cumulative number
of repetitions for seeds, as shown in Fig. 5. The forward
index stores the reference positions in seed-converted integer
order. For example, in Fig. 5, seed1 and seed2 appear once
each in the reference sequence, at positions 59 and 98,
respectively, and seed3 appears three times, at positions 180,
340, and 790.

The core stage that improves the alignment capability
in our algorithm is the alignment procedure, illustrated in
Fig. 6. For each read, we iterate through the seeds in both
forward and backward directions and calculate the starting
position of the read in the reference sequence. If two seeds

0 1 1 2 2 20 50range
index

0 1 2 3 4 5 6 7 8 9 10 11 12

0
13

5 555

forward
index 340 79018098

0 1 2 3 4

59

seed1 seed3seed2

Fig. 5. Index storage: The range index and forward index arrays together
store the reference positions for all seeds. A seed can be uniquely
mapped to an index i in the range index array. The value in range index[i]
is the starting index in the forward index array, and the value in range
index[i+1] is the index after the ending index in the forward index array.

Seed 1 Seed 2 Seed i

Seed j Seed N-1 Seed N
Reference

Read Seed i

Seed j Seed x

(1) Same Ref Start Found
Forward Matching

Backward Matching

Calculate Hamming
Distance H(x)

The piece on the reference

H
(x

) >
 x

or
_r

at
e

Local Alignment

H(x) <= xor_rate
Matched

Calculate Edit
Distance E(x)

E(x) <= threshhold

Unmatched
E(x) > threshhold

(2) No Same Ref Start Found

Fig. 6. Alignment procedure: when multiple seeds exist on a single read,
if a match exists, two seeds should match to the same starting position
on the reference. If the candidate sequence on the reference has a very
low Hamming Distance against the read, it is a match. If there are the
same starting positions, but the Hamming Distance is large, we use our
proposed local alignment to find a match with insertion or deletion.

appear to have the same starting position, likely, the read is
indeed cut from the reference at that position. We consider
this read a matchable candidate when the same reference
start is found. We need also to verify whether the match
is exact. To make this process fast, we calculate the Ham-
ming Distance [33], an XOR between two sequences. When
there is no difference or only a few base modifications, the
Hamming Distance will be small, and we can consider that
a match is found.

We improve sequence alignment capability by further
conducting a local search to calculate the Edit Distance [34]
when the same reference start is found but the Hamming
Distance is large. A matchable sequence with a large Ham-
ming Distance is usually caused by insertion or deletion.
Prior works [5], [35], [36] consider such cases unmatchable
sequences. We use the WFA-2 algorithm [37], [38] to obtain
the Edit Distance and the alignment CIGAR [39] to recon-
struct the original read with insertions or deletions.

The segmentation process connects alignment results to
form a single aggregated segment for better lossless com-
pression. In sequence segmentation, we can further reduce
the reference position storage by using the difference be-
tween positions (delta) when possible. Moreover, for paired
FASTQ files, each alignment result stores two related reads
r1 and r2, which usually form a reverse complement pair.
We switch the forward read’s result to r1 so there is a higher
chance for the delta to be valid in the segmentation process.
For quality segmentation, we propose a dominant bitmap
solution, as illustrated in Fig. 7, to compress quality scores.



6

! ! G % % %! %G
0 1 2 3 4 5 6 7 8 9 10 11 12

%
13

F !!!Original

Step 1

Dominant

%

Dominant Bitmap After Step 1

0 0 0 1 1 10 10
0 1 2 3 4 5 6 7 8 9 10 11 12

1
13

0 000

Dominant Length 14

Quality Score Sequence After Step 1

! ! G!G
0 1 2 3 4 5 6 7 8

F !!!

Step 2

Dominant

!

Dominant Bitmap After Step 2

14 15 16 17 18 19 20 21 22

Dominant Length 14
Final Quality Sequence Stored

GG
0 1 2

F 9

1 1 010 0 1111
13

lengthen the bitmap from step 1

 Original Quality Score Sequence

Fig. 7. Dominant quality bitmap generation: when a quality score is
dominant over others, we use 1 to mark them and remove them in the
quality score sequence. We continue to find a dominant quality score in
the remaining sequence and repeat the process. In the end, only a few
non-dominant qualities will remain in the sequence. We store a bitmap,
a dominant length array, a dominant quality array, and the remaining
quality sequence.

The idea is to use a bit instead of a byte to store each
dominant quality and let the dominant quality be further
compressed by a lossless compression algorithm such as the
run-length algorithm. Moreover, we can cluster the scores
to form fewer quality scores if the user allows a less fine-
grained quality.

Many fields in our segmentation process can be fur-
ther compressed by general-purpose lossless compression
algorithms such as Zstd [40] and Zpaq [41]. The lossless
compression mainly deals with repeated patterns such as
a long sequence of 1s or 0s in our bitmaps. Since these
compressors compress a stream of bytes, we consider them
as a black box to reduce field sizes. It is worth noting that
these compressors have to store some additional header
information during compression and thus do not necessarily
reduce the sizes for certain fields.

4.2 Innovations in Floating-point Tensors Compres-
sion
We identify two challenges in compressing floating-point
tensors that have not been addressed in prior research. First,
users may want to preview data rapidly before compressing
and transferring an entire data file. Second, most current
error-bounded compression methods, including SZ3, re-
quire loading the entire file into memory for compression.
If the file’s size exceeds memory limits, the compression
process will crash with an out-of-memory issue.

To tackle the first problem, we developed a preview
solution that involves a remote function call that instructs
the computing endpoint to read the data and generate
a visualization by converting floating-point numbers into
colors. The preview aims to help users properly configure
lossy compression without causing data to be unusable. To
achieve a higher compression ratio, users may want to set
multiple error bounds for a dataset to highlight the interest-
ing value ranges or regions. However, since an error bound
still has a gap to overall data quality such as visual quality,
the error bounds set by users may still cause unexpected

visual distortion in the data. One example is shown in Fig. 8
(A) and (B). The user knows that larger values in the dataset
are more important so they set the error bound for [0.37,
0.83] to be 0.001, while keeping other value ranges with an
error bound of 0.2. The compression ratio reaches 180, but
the data are already severely distorted.

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Difference

0

2

4

6

8

10

12

14

De
ns

ity
 %

(A) Distribution of Pointwise Difference

0 500 1000 1500 2000 2500 3000 3500

0
200
400
600
800

1000
1200
1400
1600

(B) Compressed Data Visualization

0.0 0.2 0.4 0.6 0.8
Data Value

0
1
2
3
4
5
6
7
8

De
ns

ity
 %

(C) Data Value Distribution

0 500 1000 1500 2000 2500 3000 3500

0
200
400
600
800

1000
1200
1400
1600

(D) Original Data Visualization

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 8. CESM CLDMED multi-range compression distortion

The data preview mechanism provides users with both
a visualization and a histogram of data value distribution
ahead of the compression of full dataset: see Fig. 8 (C)
and (D). Users can decide which value range to focus on
by looking at the value distribution, and determine which
regions to focus on by selecting rectangular regions on the
visualized image. Setting the error bound in this way en-
ables user to pay more attentions on data characteristics. For
an extremely large file, users can select a layer to preview
as shown in Fig. 9, which helps guide their region/range-
based compression configuration. This preview does not
involve compression and only transfers an image from the
remote machine to the local machine. The compute and
data transfer overhead is very low, and thus the preview
is very responsive. Users can easily select a few layers from
different parts of the data to have a good understanding of
the data characteristics.

For the second challenge, we introduce a layer-by-layer
compression technology2 to compress exceedingly large
files: see Fig. 10 (A). While data can be split in other ways,
as shown in Fig. 10 (B), we favor layer-by-layer because (1)
with other methods, the data points of a ‘block’ do not sit
in continuous disk space and thus would require multiple
seek operations that slow down I/O; and (2) the simplicity
of layers makes it easy to parallelize the compression. A
layer-by-layer streaming compression method transforms a
3D tensor into a sequence of 2D layers or slim 3D tensors.
This technique can divide the files into smaller sections and
then compress each section independently. It avoids out-of-
memory errors when compressing large files.

To parallelize compression, we have two methods suit-
able for different computing environments: multi-threading
and MPI programming. We first implement a multi-
threaded parallel processing architecture similar to our

2. The C++ source code and Python binding is available at https:
//github.com/legendPerceptor/SZ3

https://github.com/legendPerceptor/SZ3
https://github.com/legendPerceptor/SZ3


7

Fig. 9. The UI to preview one layer of the data in a large file. It also allows
users to visually select different regions and ranges for compression
settings.

1000

1000

1000 1000 1000
1000

1000

3000

2000

100

(A) Layer-by-layer streaming compression (B) Block-by-block splitting compression

Fig. 10. Techniques to split large files into smaller blocks or layers to
resolve the out-of-memory problem.

genome sequence compression algorithm, as depicted in
Fig. 3. This architecture is suitable for cloud computing
platforms that store data on a single or a small amount of
SSD or HDD drives, where the I/O speed does not boost up
with more I/O threads. For supercomputers, on the other
hand, to scale up to multiple computing nodes and parallel
file systems, we design a different architecture, as shown in
Fig. 11. For compression, as the original file is huge, we
can utilize multiple read processes to read the tensor in
parallel. The read processes send each layer’s information

I/O processes

Read
Process 0

Read
Process 1

Read
Process 2

Write
Process 0

Worker 0 Worker 1 Worker 2

Worker 3 Worker 4 Worker 5

Compute Processes

Read
Process 0

Write
Process 0

Write
Process 1

Compression

Decompression Write
Process N

Fig. 11. Parallel layer-by-layer compression architecture for multiple
processors on single/multiple compute nodes.

to preassigned worker processes for compression. We only
use one write process because (1) the compression ratio of
lossy floating-point tensor compression is usually quite high
thus writing is much faster than reading and computing;
(2) one writer allows the compressed chunks to be linearly
connected without the need of an address book. For de-
compression, as the decompressed data are relatively large,
we assign more processes to be writers. The advantage of
this architecture allows processors on different nodes to
compress a single file collectively. Moreover, parallel I/O
is very suitable for our layer-by-layer compression method
as each layer’s offset can easily be calculated in advance.

4.3 Compression Performance Prediction
In this subsection, we propose a prediction model to esti-
mate the lossy compression ratio, compression speed, and
peak-to-noise ratio (PSNR) for prediction-based lossy com-
pression algorithms including SZ and SZ3.

In general, users cannot predict compression quality
(such as compression ratio and data distortion level) for
a particular error-bounded lossy compressor without per-
forming the compression on the given dataset. This is
because the effect of data prediction/transformation and
coding in the compressor varies with diverse data features.
With our prediction model, users can quickly test multiple
compression settings and choose the one that best matches
their use case.

Lorenzo Prediction
Interpolation
Linear Regression

Predictor

Quantizer Quantization Bins

Data

Compressor-based Features

P0 quantization
entropy

run-length
estimator

min max value range entropy
average

lorenzo error

p0

Data-based Features

subsampling

Config-based
Features

error bound

compressor
type

Fig. 12. The features used to predict compression quality are catego-
rized into three types: config-based, compressor-based, and data-based
features, which are shown as colored boxes.

We train a machine learning (ML) model on masses
of sample datasets, with the aim to build a relationship
between the compression-related features and the compres-
sion quality. The model can then be used to estimate com-
pression quality accurately based on the features extracted
from the given datasets at runtime.

We derive many features as input to our model, as illus-
trated in Fig. 12. Identifying a set of useful features is chal-
lenging, because (1) the extraction of each feature should
have low computation cost, and (2) the features should
form an accurate indicator of the compression quality. We
consider features in one of three categories: (1) config-level
features, (2) data-based features, and (3) compressor-level
features.

Config-based features are configuration settings (includ-
ing error bound values and compression pipeline) specified
by users. Different error bounds can yield largely different



8

compression quality (e.g., compression ratios and compres-
sion speed). Compression quality also depends on specific
compressors each with distinct designs. The prediction-
based compressors [6], [7], for example, may adopt vari-
ous predictors which may exhibit different performances.
We enable our model to recognize the characteristics of
compressors by treating the compressor-type feature as a
discrete classification variable and feeding it with profiling
data.

Data-based features describe the characteristics of
datasets, which is also a key factor in distinguishing com-
pressibility. As shown in TABLE 1, even for the same appli-
cation, different datasets can have very different properties
such as min, max, and value range. In addition, we also
use byte-level information entropy as one feature, because it
reflects the “chaos-level” of a dataset. The entropy is defined
as

H(X) = −
∑

x∈S
p(x) log p(x) = E[− log p(X)]

where S is the set of byte values (0-255) and p denotes
the probability/frequency of an element in S. In general,
the higher entropy a dataset exhibits, the more difficult
it is to compress that dataset. As verified in Fig. 13 (a)
and (b), the entropy value projects a positive correlation
against the compression time, especially when the error
bound is relatively low. It is worth noting that when the
error bound is relatively high, the entropy would lose its
effect (as shown in Fig. 13 (c)), because the large error bound
would diminish the data variation. Moreover, we use the
average Lorenzo error (i.e., the difference between the true
data value and Lorenzo-predicted value [6]) as a feature
to shape the “easiness of prediction” for a dataset. If the
average Lorenzo error is high, the prediction stage tend to
be imprecise, leading to low compression ratio.

TABLE 1
Examples of the basic data-based features in different datasets:

CLDHGH, FLDSC, and PCONVT are three fields in the CESM dataset.
HACC-VX and HACC-VY are two fields in the HACC dataset.

Dataset CLDHGH FLDSC PCONVT HACC-VX HACC-XX
min 0.00 92.84 39025.27 -3846.21 0.00
max 0.92 418.24 103207.45 4031.25 256.00
value range 0.92 325.40 64182.18 7877.46 256.00

Fig. 13. Data entropy vs compression time in Reverse Time Migration
(RTM) [42] application with three error bound settings

Compressor-based features are the properties of the
intermediate data used in the course of lossy compression,
which generally have the highest prediction ability for com-
pression quality. Specifically, we focus on the quantization
bins, as shown in Fig. 12. Since the quantization bins are

encoded by the subsequent lossless encoders, its character-
istic closely correlates to the final compression quality. In
order to control the execution overhead, the quantization
bins are computed based on the sampled data points. As
demonstrated in Fig. 12, we develop four compressor-based
features, including p0, P0, quantization entropy, and run-
length estimator. (1) p0 denotes the percentage of the 0-
value bins over all quantization bins. In general, large p0
tends to yield a high compression ratio and compression
speed, because a large majority of predictions should be
accurate in this situation. (2) P0 denotes the fraction of
‘0’(encoded) taken in Huffman coding in the regard of the
full Huffman encoded data size. (3) Quantization entropy
is the entropy of quantization bins. If the prediction is
accurate, quantization bin values will mostly be near 0,
and the quantization entropy will be low. (4) Run-length
estimator (denoted Rrle) is derived from P0 and p0 by the
following equation: Rrle = 1/((1− p0)P0 + (1− P0)).

Fig. 14. The relationship between p0, quantization entropy, run-length
estimator and compression ratio for Nyx application.

Fig. 15. Run-length estimator alone fails to predict the compression
ratio for Miranda application while the three features together form a
correlation to the compression ratio which can be learned by a machine-
learning model.

Although the p0 and P0 are also used in related work
[20], our solution is much more accurate in compression
quality estimation in general cases. The estimation of com-
pression ratio in [20] depends on the following formula:
ĈR = 1/(C1(1 − p0)P0 + (1 − P0)), where C1 is an ad-
hoc tuning parameter which varies with different applica-
tions. We use SZ3’s default configuration as an example to
show the relation between extracted features and the actual
compression performance. As shown in Fig. 14 (c), almost
all data points are located on the line y = x (red line in
the figure), which means the estimated compression ratio
ĈR under that formula could be very accurate in this case.
This is due to the fact that this formula happens to form
a linear function with compression ratio for the Nyx [43]
application. However, that formula is sensitive to the tuning
of the C1 parameter, which may cause unexpected large
compression quality estimation errors in other applications.
For instance, the estimator’s value does not form a linear
relationship with the compression ratio for the Miranda [44]



9

application (as shown in Fig. 15 (a) and (b)), which leads
to bad compression quality estimation in turn (see Fig. 15
(c)). In comparison, our Rrle formula does not depend on
the C1. In fact, Rrle serves as a feature and we feed it
into the ML model along with other features (including p0
and P0), and thus the model can automatically fine-tune
the coefficients applied on those features, thus being able to
keep an accurate estimation in most of cases.

Fig. 16. CESM dataset — PSNR versus compressor-level features

Fig. 17. ISABEL dataset — PSNR versus compressor-level features

Our compressor-based features can also be used to pre-
dict the reconstructed data distortion. This is because these
features are also closely correlated to the data distortion
metrics such as PSNR, as verified in Fig. 16 and Fig. 17.

5 PERFORMANCE EVALUATION

We present our experimental results on the proposed com-
pression algorithms and the Ocelot framework. We first
evaluate the performance of the genome sequence compres-
sion and compare it against other state-of-the-art compres-
sion algorithms. Then we evaluate the large 3D tensor com-
pression and the effectiveness of our layer-by-layer com-
pression techniques. Finally, we evaluate the compression
run time estimation and end-to-end data transfer perfor-
mance for the Ocelot framework.

5.1 Experimental Settings
We collect performance data on two ACCESS supercom-
puters (Purdue Anvil, Rockfish) and two Alibaba ECS ma-
chines, with specifications in Table 2. The network band-
width for the two ACCESS endpoints are both 100 Gbps,
while for Alibaba ECS, the default is 10 Mbps, with a max-
imum configuration of 1000 Mbps—highlighting a signifi-
cant network disparity between supercomputers and cloud
clusters.

We evaluate genome sequence compressors on three
datasets sequenced on different platforms and with various
lengths: see Table 3. (We refer to these datasets as A, B,
C in the following.) For floating-point tensor compression,
we employ 6 moderately sized datasets, QMCPACK [48],
ISABEL [49], RTM, Miranda [44], CESM [50], and Nyx [43],
and two large datasets, Forced Isotropic Turbulence and
Turbulent Channel Flow [51]: see Table 4.

TABLE 2
Machine Specifications: Cores and Memory are the total amount in a

single compute node.

Machine CPU Cores Memory
Rockfish Intel Xeon Gold Cas-

cade Lake 6248R
64 192 GB

Purdue Anvil AMD EPYC 7543 32-
Core Processor

128 256 GB

Argonne Bebop Intel Xeon E5-2695v4 &
Phi 7230

36 128GB

Alibaba ecs.c7se.4xlarge Intel Xeon Platinum
8369B

16 32 GB

Alibaba ecs.g7.32xlarge Intel Xeon Platinum
8369B

128 512 GB

TABLE 3
Genome Sequence Datasets

Dataset Platform Symbol Size
E100024251 L01 104 [45] DNBSEQ-T7 A 18+20 GB
CL100076243 L01 [46] BGISEQ-500 B 54+55 GB
E100030471QC960 L01 [47] DNBSEQ-T7 C 28+27 GB

5.2 Genome Sequence Compression Evaluation

We compare the performance of our genome sequence com-
pression algorithm against three modern genome sequence
compression algorithms: Spring [52], GTZ [27], and genozip
[5]. We measure compression ratio (CR), (de)compression
CPU time, and (de)compression wall time. As shown in
Fig. 18, Spring compresses more slowly and achieves a
lower compression ratio than the other methods, and thus
we do not consider it further. GTZ [27] is fast but has a
lower compression ratio and it cannot successfully compress
paired FASTQ file compression (probably due to an internal
bug). Therefore, we use the single file compression bench-
mark to compare the four algorithms. We conclude that the
best existing genome compression algorithm is Genozip [5]
in terms of project completeness, ease of use, compression
ratio, and compression speed. We present a more detailed

TABLE 4
Floating-point tensor datasets: the dimensions are layed out in the
order of Z,Y,X, where X is the fastest changing axis in the memory.

Application Description Dimensions Sizes
QMCPACK electronic structure cal-

culations of molecular,
periodic 2D, and peri-
odic 3D solid-state sys-
tems

33120×69×69
(float32)

150MB

ISABEL temperature, speed, etc. 100×500×500
(float32)

95MB

RTM seismic imaging in com-
plicated areas

235×449×449
(float32)

180MB

Miranda Hydrodynamics code
for large turbulence
simulations

256×384×384
(float32)

144MB

CESM cloud, temperature,
pressure in climate
simulation.

1800×3600 (float32) 25MB

Nyx density, temperature in
cosmology simulation

512×512×512
(float32)

512MB

Turbulent
Channel
Flow

Pressure field of a direct
numerical simulation of
forced isotropic turbu-
lence.

4096×4096×4096
(float32)

256GB

Forced
Isotropic
Turbulence

A pressure field of a di-
rect numerical simula-
tion of fully developed
flow

1536×7680×10240
(float64)

900GB



10

comparison with Genozip in Table 5. Note that the com-
pression ratio is calculated based on the gzipped original
file sizes.

GTZ Spring Genozip Ours
0

200

400

600

800

1000

1200

1400

1600

Co
m

pr
es

sio
n 

Ti
m

e 
(s

ec
on

ds
)

GTZ Spring Genozip Ours
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
m

pr
es

sio
n 

Ra
tio

Fig. 18. Compression time and ratio comparison on the first file
of E100024251 L01 104. Each algorithm uses 16 threads on the
ecs.c7se.4xlarge machine.

TABLE 5
Our algorithm vs. Genozip. CR: compression ratio; CPTime: CPU time

in compression; DPTime: CPU time in decompression.

Compressor Dataset CR CPTime DPTime

Our Algorithm

A 3.37 151m48s 94m20s
B 2.44 417m17s 251m15s
C 2.54 522m16s 245m31s

Genozip

A 3.14 160m28s 100m14s
B 2.33 572m5s 303m54s
C 2.45 526m43s 281m14s

Our findings indicate that our algorithm has demon-
strated advantages in both compression ratio and compres-
sion time across the three paired sequence datasets. Our
algorithm allocates additional time to sequence alignment to
achieve a superior compression ratio. However, the overall
(de)compression time is reduced due to our multi-threading
architecture disregarding the order of reads and string
identifiers. In contrast, Genozip ensures complete lossless
compression. We assert the validity of our algorithm for the
following facts: in FASTQ files, each read is self-contained,
and the string identifier typically pertains only to sequenc-
ing machine specifications, which are inconsequential for
downstream analysis.

We analyze our algorithm’s memory and CPU utiliza-
tion. In Fig. 19, memory usage ranges between 50% and 60%
(∼19 GB) when all CPU resources are utilized. If memory
is limited, say to 16 GB, reducing the number of threads
or decreasing the read number can reduce the memory
demand. On the other hand, our algorithm is capable of
fully utilizing computing resources with an appropriate
number of threads. Fig. 19 (B) shows that by setting the
thread number to 16 (the number of available CPUs), each
worker can take up one CPU core and reach over 90%
of CPU utilization. The slight oversubscription shown in
Fig. 19 (C) does not increase the CPU utilization more while
having some troughs that drop to 65% of utilization. We
can safely conclude that setting the thread number to the
number of CPU cores available can utilize the computing
resources well enough.

0 100 200 300 400 500 600
Time (s)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 %

(A) 8 threads compression, 100000 reads in one chunk
Memory Usage Percentage
CPU Usage Percentage

0 100 200 300 400 500 600
Time (s)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 %

(B) 16 threads compression, 100000 reads in one chunk

Memory Usage Percentage
CPU Usage Percentage

0 100 200 300 400 500 600
Time (s)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 %

(C) 20 threads compression, 100000 reads in one chunk

Memory Usage Percentage
CPU Usage Percentage

Fig. 19. Memory and CPU usage in compression. Tests are run on a
ecs.c7se.4xlarge cloud server with 16 CPUs and 32 GB memory; the
dataset is E100024251 L01 104.

2 4 8 12 16 20
Number of Threads

0

1000

2000

3000

4000

5000

Ti
m

e 
(s

)

fastqIO read time
total compression time
I/O wait computation time

Fig. 20. Scalability evaluation of our algorithm: The evaluation is per-
formed on ecs.g7.32xlarge with sufficient CPUs and memory.

Lastly, we analyze the scalability of our algorithm by
recording compression wall time as we increase the num-
ber of threads. As shown in Fig. 20, our algorithm scales
well when there are fewer than 16 threads. The I/O wait
computation time decreases to 0 when there are 20 threads,
meaning the I/O has been too slow to provide sufficient
data for so many threads to consume. If the I/O is faster
than the computation, the read buffer will build up to
full and the I/O has to wait for the computation to fin-
ish to continue reading data. The total compression time
converges with fastqIO read time when enough threads
are provided. As the genome sequence data is currently
distributed by gzip or plain text format, there is very little
room to optimize for parallel I/O. However, we will show
that our method to compress floating-point tensors can scale
up further with faster parallel I/O on supercomputers in the
next subsection.

5.3 Floating-point Tensor Compression Evaluation
We first evaluate the relationship between layer depth and
compression ratio for our proposed layer-by-layer compres-
sion algorithm on the four 3D floating-point tensor appli-
cations. As Fig. 21 shows, the compression ratio increases
when the layer gets thicker for most datasets. This is because



11

the 3D tensor gives the compressor more information to
predict nearby data values. The current SZ3 3D interpolation
method can reach a higher compression ratio for 3D data.
However, we also notice that after the thickness reaches
32 for Miranda and Nyx, the compression ratio does not
increase clearly. That is, when applying such a thin layer,
we can already reach a good compression ratio with a small
amount of memory or a high level of parallelization. The
Forced Isotropic Turbulence result shows that for certain
huge datasets, the 2D layer already contains many data
points for prediction, which might even outperform 3D
compression in terms of compression ratio.

1 32 64 128 256 512
Layer Depth

3.2

3.4

3.6

3.8

Co
m

pr
es

sio
n 

Ra
tio

Nyx

velocity x
velocity y
velocity z

1 16 32 64 128 256
Layer Depth

150

200

250

300

350

400

450

Co
m

pr
es

sio
n 

Ra
tio

Miranda

density
diffusivity
pressure

0 10 20 30 40 50 60
Layer Depth

80

100

120

140

160

Co
m

pr
es

sio
n 

Ra
tio

Turbulent Channel Flow

0 5 10 15 20 25 30
Layer Depth

40

41

42

43

44

45

Co
m

pr
es

sio
n 

Ra
tio

Forced Isotropic Turbulence

Fig. 21. Compression ratio vs. Layer Depth: Multiple fields in Nyx,
Miranda and two large tensors Turbulent Channel Flow and Forced
Isotropic Turbulence.

0.010 0.005 0.000 0.005 0.010
Difference

0

20

40

60

80

100

120

De
ns

ity

(A) Nyx all together compression

0.010 0.005 0.000 0.005 0.010
Difference

0

50

100

150

De
ns

ity

(B) Nyx layer-by-layer compression

0.010 0.005 0.000 0.005 0.010
Difference

0

50

100

150

De
ns

ity

(C) Miranda all together compression

0.010 0.005 0.000 0.005 0.010
Difference

0

250

500

750

1000

1250

1500

De
ns

ity

(D) Miranda layer-by-layer compression

Fig. 22. Nyx temperature and Miranda density pointwise error distribu-
tion. The error bound is set to 0.01 for all four configurations. The layer
depth is set to 32 for layer-by-layer compression. The compression ratios
are (A) 2.17 (B) 2.07 (C) 313, (D) 297.

We then evaluate the compressed data quality with
point-wise error distribution and visualization. The exper-
iment result shows that our layer-by-layer compression
method has comparable or even superior compression qual-
ity compared to the traditional all-together method. The
pointwise error distribution changes when using layer-by-
layer compression: see Fig. 22. This approach appears to
have a more concentrated error for both Miranda and Nyx
datasets, although it has a slightly worse compression ratio
due to the overhead of describing each layer. We can also
verify the compression quality via the visualization method
provided by Ocelot in Fig. 23, where there is no obvious

0 100 200 300

0

100

200

300eb
=0

.0
1

Miranda Original

0 100 200 300
PSNR=57.58, CR=314.3

0

100

200

300

Miranda All-together

0 100 200 300
PSNR=59.60, CR=297.7

0

100

200

300

Miranda layer-by-layer

0 200 400

0

200

400eb
=0

.0
1

Nyx Original

0 200 400
PSNR=62.96, CR=19.35

0

200

400

Nyx All-together

0 200 400
PSNR=62.91, CR=18.44

0

200

400

Nyx Layer-by-layer

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

3.0

8

10

12

14

8

10

12

14

8

10

12

14

Fig. 23. Visualization of (a) Miranda density and (b) Nyx temperature
(log scale). We arbitrarily choose layer 128 for Miranda and layer 488 for
Nyx to show the visualization results, as any layers look quite similar to
human eyes. The layer depth in layer-by-layer compression is 32. Axes
correspond to the X and Y spatial dimensions (384x384 for Miranda and
512x512 for Nyx).

difference between the original data and our compressed
data. The PSNR values are also quite close in the two
methods.

14 8 16 4832 64 128
Number of threads

500

1000

1500

2000

2500

3000

Ti
m

e 
(s

)

Forced Isotropic Turbulence

compress
decompress
read I/O time

14 8 16 4832 64 128
Number of threads

10

20

30

40

Pe
ak

 M
em

or
y 

%

compress
decompress

14 8 16 4832 64 128

500

1000

1500

Ti
m

e 
(s

)

Turbulent Channel Flow

compress
decompress
read I/O time

14 8 16 4832 64 128

2

3

4

5

Pe
ak

 M
em

or
y 

%

compress
decompress

Fig. 24. Compression time vs number of threads for the two large
datasets. The layer depth is set to 4.

Next, we evaluate the scalability of our multi-threaded
layer-by-layer compression algorithm. Fig. 24 shows that
our algorithm can benefit from multiple CPU cores to
compress a huge file in a much shorter time. The total
compression wall time ceases to decrease after reaching 16
threads because the I/O has become the bottleneck. The
program spends 160 seconds compressing 270GB of data,
while the total amount of read time is 100s, the overhead
of multi-thread is quite minimal. To further improve the
performance, parallel I/O is needed as the read speed
has become a bottleneck. Also, we note that the memory
consumption is higher in decompression with more threads
while the memory consumption is higher in compression
with fewer than 16 threads. This is because the write I/O
becomes a bottleneck in decompression and many worker
threads hold the decompressed data to be written. This can
cause an out-of-memory error with a mismatched I/O speed
and number of threads.

We further improve the scalability by utilizing MPI pro-
gramming with parallel I/O support and multi-node coor-
dination. To avoid the out-of-memory problem for Forced
Isotropic Turbulence and optimize (de)compression time,
we limit the tasks-per-node parameter to 32 but increase
the number of nodes to get more CPU cores, e.g. we used



12

16 32 64 128 256
Number of threads/processes

20

40

60

80

100

120

140

160

Ti
m

e 
(s

)
Turbulent Channel Flow

multi-thread compress
multi-thread decompress
multi-node compress
multi-node decompress

16 32 64 128 256
Number of threads/processes

0

100

200

300

400

500

600

Ti
m

e 
(s

)

Forced Isotropic Turbulence

multi-thread compress
multi-thread decompress
multi-node compress
multi-node decompress

Fig. 25. Compression performance comparison between single-node
multi-threaded and multi-node multi-process methods. The multi-thread
line stops at 128 threads because the memory is insufficient with more
threads on a single node and the program would exit with an out-of-
memory error.

8 nodes to get 256 processors. Also, we keep the ratio of
the number of I/O processes and the number of worker
processors 1:8 to reach near-optimal performance. As Fig. 25
shows, the (de)compression time continues to decrease after
using more CPU cores. We also notice that this approach’s
total time is much lower than the multi-threading method
even with the same number of threads/processes. It is
largely because we use a more proper ratio of I/O processes
and worker processes. In the multi-threading model, when
the worker threads are more than the read thread’s ability to
fill up the read queue, workers may contend for locks with
a higher overhead time. Most existing error-bounded com-
pressors have no such capability to parallelize to this scale.
Our approach extends floating-point tensor compression to
non-uniform memory access systems.

1 4 8 16 32 36 40 44 48 52 56
Layer Depth

400

600

800

1000

1200

1400

Ti
m

e 
(s

)

Forced Isotropic Turbulence

compress
decompress

1 4 8 16 32 36 40 44 48 52 56
Layer Depth

0

10

20

30

40

50

Pe
ak

 M
em

or
y 

% compress
decompress

1 4 8 16 32 64
Layer Depth

300

400

500

Ti
m

e 
(s

)

Turbulent Channel Flow

compress
decompress

1 4 8 16 32 64
Layer Depth

2

4

6

8

Pe
ak

 M
em

or
y 

% compress
decompress

Fig. 26. Compression time and memory consumption of 4-thread layer-
by-layer compression on Turbulent Channel Flow dataset. Experiment
on Purdue Anvil shared partition with 4 tasks per node and 512 GB
memory.

Another advantage of our method is that it demands
minimal memory for compression, particularly with thin
layers. As shown in Fig. 26, the layer depth determines the
peak memory consumption. For a thin layer with depth 1,
the program only needs 1%, 5 GB memory to compress a file
of over 900GB. Other compressors like SZ3, SZ, ZFP, and
MGARD face challenges with large tensors, primarily due
to memory limitations. On the other hand, our program can
run on multiple nodes to utilize memory on multiple nodes
with thicker layers to obtain a better compression ratio.

5.4 Compression Ratio/Time Estimation
To make an estimation of compression time and ratio, we ap-
ply a decision tree regressor model on 11 features described
in Section 4.3. We set various different error bounds from 1e-
6 to 1e-1 to compress the data and collect the features. We
then train a decision tree regressor using 70% of the data for
training and 30% for testing on each of the applications in
TABLE 4.

The distribution of the difference between the predicted
values and real values is shown in Fig. 27. The green
bounding box shows the 80% confidence interval, meaning
80% of prediction error falls into the green box. Thinner
box means higher prediction accuracy. Fig. 27 indicates our
prediction method performs very well, as the differences
between predicted and actual values are very close to 0.

Fig. 27. Nyx/CESM/Miranda application compression time and ratio
prediction error distribution (measured on Bebop KNL partition): the X-
axis is the difference between the predicted value and the real value, the
Y-axis is the percentage for each small range of difference values.

The prediction has a negligible overhead (around 1.7%)
compared with the total compression time when we sample
1% of data (using 1 data point every 100 data points).
As shown in Fig. 28 (A), the sampling helps reduce the
overhead time from more than 70% to less than 5%. The
extracted compressor-based features p0 and P0 are different
from the actual percentage of the zero quantization code
because we run the Lorenzo prediction with the real data
values instead of the reconstructed data values.

Fig. 28. (A) Overhead time analysis on Nyx application; (B) Compression
time range on Bebop and Anvil machines for multiple applications.

TABLE 7 shows the prediction results for our datasets.
We can observe from the values that the compression time
is gathered into groups related to the application to which
they belong. Moreover, we see that our model can always
precisely predict the compression ratio and time at different
error-bound settings. This is because the distribution of the
quantization code changes according to error bounds, and
our model captures this information with p0, P0 and the
quantization entropy effectively.



13

TABLE 6
Data compression and transfer performance. T(NP): transfer time with no compression, Speed(NP): transfer speed with no compression, CPTime:
time taken to compress the data, T(CP): transfer time for compressed data, Speed(CP): transfer speed for compressed data, DPTime: time taken
to decompress data, Total: sum of compression time, transfer time, and decompression time; Reduced: total time reduced with compression. All

times in seconds.

Dataset Total Size Direction T(NP) Speed(NP) CPTime T(CP) Speed(CP) DPTime Total Reduced
Nyx 3.22 GB Anvil→Rockfish 6 547 MB/s 20 38 12.3 MB/s 20 78 -72

Anvil→ECS 273 11.8 MB/s 20 42 9.49 MB/s 40 102 171
ECS→Anvil 273 10.3 MB/s 60 45 10.3 MB/s 20 125 148

Turbulent 256 GB Anvil→Rockfish 774 355 MB/s 175 55 338 MB/s 735 965 -191
Channel Flow Anvil→ECS 25303 10.4 MB/s 175 1740 11.0 MB/s 134 2049 23254

ECS→Anvil 23198 11.3 MB/s 230 1709 11.2 MB/s 125 2064 21134
Genome A 39.27 GB Rockfish→Anvil 64 611 MB/s 1095 36 316 MB/s 375 1506 -1442

Anvil→(Rockfish)→ECS 3527 11.4 MB/s N/A 1055 11.3 MB/s 874 3088 439
ECS→(Rockfish)→Anvil 3904 10.3 MB/s 1100 1181 10.1 MB/s N/A 2692 1212

TABLE 7
Compression Time and Ratio Prediction Examples: EB denotes error

bound, CR denotes compression ration, CPTime denotes compression
time. P-CR and P-CPTime denote predicted compression ratio and

compression time, respectively. All time-related information is
measured in seconds and collected on the Bebop KNL partition.

Dataset EB P-CR CR P-CPTime CPTime
Nyx 1e-6 1.19 1.18 35.90 35.60
Baryon Density 1e-4 3.15 3.10 32.30 33.30

1e-2 10.40 10.20 30.30 30.30
CESM 1e-6 1.14 1.14 1.46 1.46
LHFLX 1e-3 2.56 2.49 1.97 1.59

1e-2 5.25 4.43 1.55 1.50
CESM 1e-6 5.36 6.97 1.61 1.85
SNOWHICE 1e-4 21.00 21.90 1.55 1.58

1e-3 48.00 52.80 1.40 1.48
RTM-1982 1e-6 4.78 4.80 13.85 13.32
RTM-1048 1e-4 24.72 24.89 13.10 13.30
RTM-0594 1e-4 83.15 84.99 12.13 11.43
Miranda 1e-2 18.99 16.74 9.57 9.31
Velocity-x 1e-3 7.11 7.67 10.17 9.70

1e-1 9.11 9.43 52.05 52.49

5.5 Data Transfer Performance

Data transfer performance is crucial in determining whether
data compression is advantageous for achieving a shorter
transfer time, considering the additional time costs incurred
during compression and decompression. Our framework
aims to be adaptable to various network conditions to meet
users’ requirements. Generally, supercomputers boast exten-
sive network bandwidths, whereas cloud service providers
like Alibaba Cloud may provide a more restricted network
capability. We evaluate the data transfer performance of our
Ocelot framework on the machines listed in Table 2.

The findings suggest that our proposed compression
algorithms offer significant advantages for systems with
slow networks and rapid computation. As demonstrated in
Table 6, the performance improvement exceeds 10x when
transferring data from supercomputers to typical cloud
computing clusters. While contemporary cloud comput-
ing platforms boast comparable single-node computational
capabilities to supercomputers, many are constrained by
network bandwidth limitations. Our framework holds the
potential to substantially enhance transfer efficiency across
these platforms.

On the other hand, the overall transfer time may not
benefit from compression in supercomputers because of su-
perior networks. Nonetheless, our Ocelot framework effec-
tively leverages specific characteristics to distribute compu-

tational tasks across different supercomputers. For example,
we aim to transmit genome sequence data from Purdue
Anvil to the Alibaba ECS. Due to the absence of Intel
AVX512 optimization in the AMD Zen 3 processors uti-
lized by Purdue Anvil, our genome sequence compression
code cannot be compiled on this cluster. As a workaround,
we transfer the data to Rockfish for compression before
forwarding the compressed data to the ECS destination.
This roundtrip approach ultimately optimizes overall time
efficiency despite the intermediate steps involved, as shown
in the third row of Table 6.

6 CONCLUSION AND FUTURE WORK

We developed a novel interactive, real-time Compression-
as-a-Service (CaaS) platform Ocelot that focuses on data
compression with optimized strategies among multiple
computing clusters. Based on our experiments on compress-
ing, transferring, and storing the floating-point tensors and
genome sequence datasets, we report the following key
findings.

• Visualization and data preview provide a intuitive
way for users to set multiple error bounds on in-
teresting regions/ranges. Ocelot provides a user-
friendly graphical user interface lacking in most pre-
vious compressors.

• Ocelot can significantly benefit overall transfer per-
formance for computing clusters with good comput-
ing power but slower networks. It can automatically
offload computing tasks to other clusters with its
remote orchestration.

• Our proposed layer-by-layer compression uses a se-
ries of 2D or relatively thin 3D layers with prediction-
based compression. The method avoids the memory
limit constraint and offers great parallel compression
capability.

• Our genome sequence compression algorithm
achieves better compression ratios than state-of-the-
art algorithms, by employing a better alignment al-
gorithm and an optimized quality score compression
method, and by not keeping string identifiers and
read orders.

Ocelot orchestrates compression on multiple clusters and
is not limited to the aforementioned data types. Future
reseach can integrate more types of compressors and even



14

other computing tasks into the framework. Our compres-
sion run time prediction is rather simple and relies on histor-
ical data. It does not adapt to the characteristics of different
compressors. Future work can look into the compressor
details to see if more accurate predictions can be made with
limited overhead.

ACKNOWLEDGMENTS

The material was supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Comput-
ing Research (ASCR), under contract DE-AC02-06CH11357,
and supported by the National Science Foundation under
Grant OAC-2003709 and OAC-2104023. We acknowledge
the computing resources provided on Bebop (operated by
Laboratory Computing Resource Center at Argonne) and
also ACCESS-CI computing resources (Purdue Anvil and
Rockfish).

REFERENCES

[1] T. E. Fornek, “Advanced photon source upgrade project prelimi-
nary design report,” 9 2017.

[2] N. Tchipev et al., “Twetris: Twenty trillion-atom simulation,” The
International Journal of High Performance Computing Applications,
vol. 33, no. 5, pp. 838–854, 2019.

[3] K. Chard, S. Tuecke, and I. Foster, “Globus: Recent enhancements
and future plans,” in XSEDE16 Conference on Diversity, Big Data,
and Science at Scale, ser. XSEDE16. New York, NY, USA: Associa-
tion for Computing Machinery, 2016.

[4] Y. Liu, Z. Liu, R. Kettimuthu, N. Rao, Z. Chen, and I. Foster, “Data
transfer between scientific facilities – bottleneck analysis, insights
and optimizations,” in 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2019, pp. 122–131.

[5] D. Lan, R. Tobler, Y. Souilmi, and B. Llamas, “Genozip: a
universal extensible genomic data compressor,” Bioinformatics,
vol. 37, no. 16, pp. 2225–2230, 02 2021. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btab102

[6] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cap-
pello, “Error-controlled lossy compression optimized for high
compression ratios of scientific datasets,” in 2018 IEEE International
Conference on Big Data (Big Data), 2018, pp. 438–447.

[7] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, “Sz3:
A modular framework for composing prediction-based error-
bounded lossy compressors,” IEEE Transactions on Big Data, pp.
1–14, 2022.

[8] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[9] D. Tao, S. Di, Z. Chen, and F. Cappello, “In-depth exploration
of single-snapshot lossy compression techniques for n-body sim-
ulations,” in IEEE International Conference on Big Data, 2017, pp.
486–493.

[10] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using
data compression,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3295500.3356155

[11] X.-C. Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeev, and F. T.
Chong, “Amplitude-aware lossy compression for quantum circuit
simulation,” 2018. [Online]. Available: https://arxiv.org/abs/
1811.05140

[12] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello,
“Improving performance of data dumping with lossy compression
for scientific simulation,” in IEEE International Conference on Cluster
Computing, 2019, pp. 1–11.

[13] A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and
F. Cappello, “PaSTRI: Error-bounded lossy compression for two-
electron integrals in quantum chemistry,” in IEEE International
Conference on Cluster Computing, 2018, pp. 1–11.

[14] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–
1101, 1952.

[15] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23,
no. 3, pp. 337–343, 1977.

[16] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cap-
pello, “Optimizing error-bounded lossy compression for scientific
data by dynamic spline interpolation,” in IEEE 37th International
Conference on Data Engineering, 2021, pp. 1643–1654.

[17] J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen, and
F. Cappello, “Exploring autoencoder-based error-bounded com-
pression for scientific data,” in IEEE International Conference on
Cluster Computing, 2021, pp. 294–306.

[18] X. Liang, B. Whitney, J. Chen, L. Wan, Q. Liu, D. Tao, J. Kress,
D. Pugmire, M. Wolf, N. Podhorszki, and S. Klasky, “Mgard+:
Optimizing multilevel methods for error-bounded scientific data
reduction,” 2020.

[19] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing
lossy compression rate-distortion from automatic online selection
between sz and zfp,” IEEE Transactions on Parallel and Distributed
Systems, vol. 30, no. 8, pp. 1857–1871, 2019.

[20] S. Jin, S. Di, J. Tian, S. Byna, D. Tao, and F. Cappello, “Improving
prediction-based lossy compression dramatically via ratio-quality
modeling,” in IEEE 38th International Conference on Data Engineer-
ing, 2022, pp. 2494–2507.

[21] M. H. Rahman, S. Di, K. Zhao, R. Underwood, G. Li, and F. Cap-
pello, “A feature-driven fixed-ratio lossy compression framework
for real-world scientific datasets,” in 2023 IEEE 39th International
Conference on Data Engineering (ICDE), 2023, pp. 1461–1474.

[22] A. Ganguli, R. Underwood, J. Bessac, D. Krasowska, J. C. Calhoun,
S. Di, and F. Cappello, “A lightweight, effective compressibility
estimation method for error-bounded lossy compression,” in 2023
IEEE International Conference on Cluster Computing (CLUSTER),
2023, pp. 247–258.

[23] R. Underwood, J. Bessac, D. Krasowska, J. C. Calhoun, S. Di,
and F. Cappello, “Black-box statistical prediction of lossy
compression ratios for scientific data,” The International Journal
of High Performance Computing Applications, vol. 37, no. 3-4,
pp. 412–433, 2023. [Online]. Available: https://doi.org/10.1177/
10943420231179417

[24] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M.
Rice, “The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants,” Nucleic Acids
Research, vol. 38, no. 6, pp. 1767–1771, 12 2009. [Online]. Available:
https://doi.org/10.1093/nar/gkp1137

[25] Y. Zhang, L. Li, Y. Yang, X. Yang, S. He, and Z. Zhu, “Light-weight
reference-based compression of fastq data,” BMC bioinformatics,
vol. 16, pp. 1–8, 2015.

[26] Z.-A. Huang, Z. Wen, Q. Deng, Y. Chu, Y. Sun, and Z. Zhu, “Lw-
fqzip 2: a parallelized reference-based compression of fastq files,”
BMC bioinformatics, vol. 18, pp. 1–8, 2017.

[27] Y. Xing, G. Li, Z. Wang, B. Feng, Z. Song, and C. Wu, “Gtz: a
fast compression and cloud transmission tool optimized for fastq
files,” BMC bioinformatics, vol. 18, no. 16, pp. 233–242, 2017.

[28] G. Benoit, C. Lemaitre, D. Lavenier, E. Drezen, T. Dayris, R. Uri-
caru, and G. Rizk, “Reference-free compression of high through-
put sequencing data with a probabilistic de bruijn graph,” BMC
bioinformatics, vol. 16, no. 1, pp. 1–14, 2015.

[29] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze, “Compression
of next-generation sequencing reads aided by highly efficient de
novo assembly,” Nucleic acids research, vol. 40, no. 22, pp. e171–
e171, 2012.

[30] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard,
B. Blaiszik, I. Foster, and K. Chard, “Funcx: A federated
function serving fabric for science,” in Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 65–76. [Online]. Available:
https://doi.org/10.1145/3369583.3392683

[31] T. Hacker, B. Athey, and B. Noble, “The end-to-end performance
effects of parallel tcp sockets on a lossy wide-area network,”
in Proceedings 16th International Parallel and Distributed Processing
Symposium, 2002, pp. 10 pp–.

[32] E. Yildirim, J. Kim, and T. Kosar, “How GridFTP pipelining,
parallelism and concurrency work: A guide for optimizing large

https://doi.org/10.1093/bioinformatics/btab102
https://doi.org/10.1145/3295500.3356155
https://arxiv.org/abs/1811.05140
https://arxiv.org/abs/1811.05140
https://doi.org/10.1177/10943420231179417
https://doi.org/10.1177/10943420231179417
https://doi.org/10.1093/nar/gkp1137
https://doi.org/10.1145/3369583.3392683


15

dataset transfers,” in SC Companion: High Performance Computing,
Networking Storage and Analysis, 2012, pp. 506–515.

[33] A. Bookstein, V. Kulyukin, and T. Raita, “Generalized hamming
distance,” Information Retrieval, vol. 5, 10 2002.

[34] C. Zhao, “String correction using the damerau-levenshtein dis-
tance,” BMC Bioinformatics, 06 2019.

[35] M. Sardaraz, M. Tahir, A. A. Ikram, and H. Bajwa, “Seqcompress:
An algorithm for biological sequence compression,” Genomics,
vol. 104, no. 4, pp. 225–228, 2014. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0888754314001499

[36] U. Ghoshdastider and B. Saha, “Genomecompress: A novel algo-
rithm for dna compression,” 2007.

[37] S. Marco-Sola, J. M. Eizenga, A. Guarracino, B. Paten, E. Garrison,
and M. Moreto, “Optimal gap-affine alignment in O(s) space,”
Bioinformatics, vol. 39, no. 2, p. btad074, 02 2023. [Online].
Available: https://doi.org/10.1093/bioinformatics/btad074

[38] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa, “Fast
gap-affine pairwise alignment using the wavefront algorithm,”
Bioinformatics, vol. 37, no. 4, pp. 456–463, 09 2020. [Online].
Available: https://doi.org/10.1093/bioinformatics/btaa777

[39] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, R. Durbin, and . G. P. D. P. Subgroup, “The
Sequence Alignment/Map format and SAMtools,” Bioinformatics,
vol. 25, no. 16, pp. 2078–2079, 06 2009. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btp352

[40] Facebook, “Zstandard,” https://github.com/facebook/zstd/
releases.

[41] M. V. Mahoney, “The zpaq compression algorithm,” 2015, https:
//api.semanticscholar.org/CorpusID:13248511.

[42] D. Feng, T. Li, G. H. Li, and X. Wang, “Reverse time migration
of gpr data based on accurate velocity estimation and artifacts
removal using total variation de-noising,” Journal of Applied
Geophysics, 2022. [Online]. Available: https://api.semanticscholar.
org/CorpusID:246657925

[43] NYX simulation, https://amrex-astro.github.io/Nyx, online.
[44] Miranda, https://wci.llnl.gov/simulation/computer-codes/

miranda.
[45] X. Hongxin, “DNBSEQT7 WES-PE150 demo data,” https://db.

cngb.org/search/project/CNP0003660/, 10 2022.
[46] “BGISEQ500 PCRfree NA12878 CL100076243 L01,”

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/
data/NA12878/BGISEQ500/.

[47] “DNBSEQ-T7 WES PE150 ,” https://db.cngb.org/search/
experiment/CNX0547764/.

[48] QMCPack, https://qmcpack.org/, online.
[49] Hurricane ISABELA Simulation Datasets, http://vis.computer.

org/vis2004contest/data.html.
[50] J. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand,

J. Arblaster, S. Bates, G. Danabasoglu, J. Edwards et al., “The
community earth system model (CESM), large ensemble project: A
community resource for studying climate change in the presence
of internal climate variability,” Bulletin of the American Meteorologi-
cal Society, vol. 96, no. 8, pp. 1333–1349, 2015.

[51] M. Lee and R. D. Moser, “Direct numerical simulation of turbulent
channel flow up to Reτ ≈ 5200,” Journal of Fluid Mechanics, vol.
774, pp. 395–415, jul 2015.

[52] S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez, and T. Weiss-
man, “Spring: a next-generation compressor for fastq data,” Bioin-
formatics, Aug 2019.

Yuanjian Liu is a Ph.D. student at the Uni-
versity of Chicago. His research interests in-
clude autonomous laboratories, computer vi-
sion, high-performance computing, and the uti-
lization of scientific data. He is also working
on the availability of knowledge and believes
that online education can have both higher ef-
ficiency and broader influence. Email: yuan-
jian@uchicago.edu.

Sheng Di (Senior Member, IEEE) received his
master’s degree from Huazhong University of
Science and Technology in 2007 and Ph.D. de-
gree from the University of Hong Kong in 2011.
He is currently a computer scientist at Argonne
National Laboratory. His research interests in-
volve resilience on high-performance comput-
ing (such as silent data corruption, optimization
checkpoint model, and in situ data compression)
and broad research topics on cloud computing.
He is working on multiple HPC projects, such as

detection of silent data corruption, characterization of failures and faults
for HPC systems, and optimization of multilevel checkpoint models. He
is the recipient of a DOE 2021 Early Career Research Program award.
Email: sdi@anl.gov.

Jiajun Huang is a Ph.D. candidate in Computer
Science at the University of California, Riverside,
and a long-term visiting student at Argonne Na-
tional Laboratory. He received his bachelor’s de-
gree in Electronic Information Engineering from
the University of Electronic Science and Tech-
nology of China (UESTC) and the University of
Glasgow (Honors of the First Class), in 2021. He
has published over 10 papers in top-tier confer-
ences and journals, including SC, ICS, IPDPS,
and TPDS. He has also received several pres-

tigious honors, including the First Place Award in the ACM Student
Research Competition (Graduate) at SC ’23 and the Dissertation Com-
pletion Fellowship Award (DCFA) from UC Riverside. His research in-
terests include high-performance computing and communication, high-
performance deep learning, parallel & distributed computing, and big
data management & analytics. Email: jhuan380@ucr.edu

Zhaorui Zhang is currently a research assis-
tant professor in the Department of Comput-
ing at The Hong Kong Polytechnic University.
She received her Ph.D. from the Department
of Computer Science at The University of Hong
Kong, Hong Kong, and her BSc degree in com-
puter science from Xi’an Jiaotong University. Her
research interests include distributed machine
learning systems, distributed systems, HPC,
cloud computing, and data reduction. Email:
zhaorui.zhang@polyu.edu.hk.

Kyle Chard is a research assistant professor
in the Department of Computer Science at the
University of Chicago. He also holds a joint ap-
pointment at Argonne National Laboratory. He
received his Ph.D. in computer science from Vic-
toria University of Wellington, New Zealand, in
2011. He is a member of the ACM and IEEE. He
co-leads the Globus Labs research group, which
focuses on a broad range of research problems
in data-intensive computing and research data
management. Email: chard@uchicago.edu.

Ian Foster is an Argonne Distinguished Fellow,
senior scientist, and director of the Data Science
and Learning division at Argonne National Lab-
oratory and a professor in the Department of
Computer Science at the University of Chicago.
He develops tools and techniques that allow
people to use high-performance computing tech-
nologies to do qualitatively new things. His work
involves investigations of parallel and distributed
languages, algorithms, and communication, as
well as applications. He is particularly interested

in using high-performance networking to incorporate remote compute
and information resources into local computational environments. Email:
foster@cs.uchicago.edu.

https://www.sciencedirect.com/science/article/pii/S0888754314001499
https://www.sciencedirect.com/science/article/pii/S0888754314001499
https://doi.org/10.1093/bioinformatics/btad074
https://doi.org/10.1093/bioinformatics/btaa777
https://doi.org/10.1093/bioinformatics/btp352
https://github.com/facebook/zstd/releases
https://github.com/facebook/zstd/releases
https://api.semanticscholar.org/CorpusID:13248511
https://api.semanticscholar.org/CorpusID:13248511
https://api.semanticscholar.org/CorpusID:246657925
https://api.semanticscholar.org/CorpusID:246657925
https://amrex-astro.github.io/Nyx
https://wci.llnl.gov/simulation/computer-codes/miranda
https://wci.llnl.gov/simulation/computer-codes/miranda
https://db.cngb.org/search/project/CNP0003660/
https://db.cngb.org/search/project/CNP0003660/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/BGISEQ500/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/BGISEQ500/
https://db.cngb.org/search/experiment/CNX0547764/
https://db.cngb.org/search/experiment/CNX0547764/
https://qmcpack.org/
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html

	Introduction
	Background and Related Work
	Error-bounded Lossy Compression
	Compression Performance Prediction
	Reference-based Sequence Compression
	Remote Task Orchestration

	Ocelot Framework Design
	Research Motivations and Goals
	Ocelot Framework

	Diverse Compression Approaches: Genome Sequences and Floating-Point Tensors
	Genome Sequence Compression
	Innovations in Floating-point Tensors Compression
	Compression Performance Prediction

	Performance Evaluation
	Experimental Settings
	Genome Sequence Compression Evaluation
	Floating-point Tensor Compression Evaluation
	Compression Ratio/Time Estimation
	Data Transfer Performance

	Conclusion and Future Work
	References
	Biographies
	Yuanjian Liu
	Sheng Di
	Jiajun Huang
	Zhaorui Zhang
	Kyle Chard
	Ian Foster


