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Why do we need 

Ocelot in HPC 

systems? How can 

it improve current 

research pipelines?

Motivation
What is lossy 

compression and 

what challenges 

do we face?

Background
We focus on two parts: 

(1) predict compression 

performance; (2) reduce 

the overall transfer time.

Method
We show that our 

prediction method can 

accurately predict the 

compression 

time/ratio, PSNR, and 

Ocelot accelerates 

large dataset transfer.

Evaluation
Ocelot can reduce the 

overall transfer time 

for large datasets by 

applying lossy 

compression.

Conclusion
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Motivation
WHY DO WE NEED OCELOT?

Lossy 
Compression
PLUS
Globus Transfer

Large amounts of data are produced by High 

Performance Computing (HPC) applications. They 

need to be transferred among multiple sites for 

analysis. Globus Transfer is widely used to address this 

need. 

However, there was not an effective way to integrate 

lossy compression and Globus Transfer to maximize 

the transfer performance. Ocelot is proposed as a new 

framework for transferring data with lossy 

compression.

Ocelot is one of the m
ost agile cats
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Motivation
WHY DO WE NEED OCELOT?

Improve Research Pipelines
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When involving compression into transfer, there are always three main parts for a 
task: (1) compression; (2) transfer; (3) decompression.

Compression can reduce file sizes for a faster transfer, but it also requires 
computation resources. There is a trade-off between compression and transfer. We 
need a mechanism to ensure the integration of compression can improve 
performance instead of weaken it.

Moreover, a bad compression setting can result in unusable data in lossy 
compression. We need a way  to figure out what setting is suitable.
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Lossy Compression
SZ, SZ2, SZ3, MGARD, ZFP, TTHRESH, etc.

There are mainly two types of lossy compression algorithms: 

(1) prediction-based methods; (2) transform-based methods. 

Our method applies to the first type of lossy compression.

Data Transfer
SCP, Globus Transfer

Globus Transfer applies GridFTP to provide more reliable, 

secure, and higher-performance data transfer. There was 

not any lossy compression involved in the transfer pipeline.

Compression Performance Prediction
Sian 2022

The prediction is based on derived values of sampled 

quantization bins’ distribution and a fixed formula. It is only 

correct on very limited datasets, and the fixed formula limits 

the generalization possibilities.02PART



SZ3 Compression

Prediction Quantization

Predicting 

Compression 

Performance

Huffman 
Encoding

The quantization code can be 

significantly compressed by 

huffman encoding if the 

prediction stage is accurate.

Lossless 
Compression

Lossless algorithms such 

like run-length, or more 

complicated ones like zstd, 

bzip can further compress 

the data.
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Challenges
Ocelot faces 3 main difficulties

The compression is lossy, and we 

need a proper setting to ensure 

the data is still usable after 

compression. We hope the 

program can automatically 

configure a valid setting based 

on compression quality 

prediction.

Lossy is a problem

The most accurate way to predict 

the compression performance is to 

run the compression, but we need 

a faster way to obtain an 

approximate result.

Prediction has overheads

We need compute nodes to 

perform parallel compression, 

but there might not be enough 

idle nodes in a shared system.

Compute nodes may not 

be available immediately

1

2 3
Overhead Resources

Valid 
Compression
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Architecture

Modules In Ocelot
Ocelot is a complete framework for data loading, compression, transfer, 

decompression, and compression quality prediction.

Ocelot is good at compressing datasets with many files by utilizing parallel 

compression to reduce the total file sizes in a short amount of time.

Direct Transfer

Compression

Transfer

Decompression

100%

10%

25%

6%

Time Consumption

(numbers are only for illustration purposes)

Ocelot Overall 41%
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Quality Predictor

Feature Extraction
We use features from 3 places: (1) config, (2) compressor, (3) data. 

Compared to previous work, we use more features to capture the 

characteristic of both data and compression algorithm.

Instead of proposing a formula to relate these features, we use a machine 

learning model to find the hidden formula, which is more generalizable to 

new datasets.

Moreover, the compressor-based features need to be extracted after the 

quantization stage, which can be time consuming. We use a sampling 

method to capture the features of a sample of the whole dataset to reduce 

the prediction overhead.
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The error bound will affect the predictability of 

certain features. We use an ML model to handle 

the complex relationships between the features 

and the target.

Entropy vs Compression Time

The red dotted line is the predicted compression 

ratio using the previous method (Sian). Because the 

formula is fixed, it fails to cover many datasets that 

do not follow that simple formula.  

Compressor Features vs 
Compression Ratio
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I/O Optimization

File Reorganization
Globus Transfer uses multiple threads for data transfer. Transferring one 

extremely large file or too many very small files will both be slow, as can be 

verified through Table II. When compressing thousands of files in a 

dataset, we need to reorganize the files to reach a better transfer 

performance.

Our approach is to connect small files together into a large file. The 

number of files and each single file size can be configured to match the 

optimal performance for different sites.

Each raw file is independent to each other, and therefore we can utilize 

parallel compression to handle this. The overhead for file reorganization is 

negligible.
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Resources Waiting

Don’t Wait!
In shared systems, the compute nodes are not always available 

immediately when a transfer task initiates. If we wait for the compression 

task to complete, it may stuck at waiting for compute nodes. Therefore, we 

should directly start transferring a portion of the files without 

compression if there are no compute nodes available.

Ocelot has a sentinel program monitoring the status of the compute node 

waiting and the transfer service. It will start the transfer service if the 

compute node is not immediately available. Once the compute node is 

assigned, the sentinel program will kill the transfer service and allow the 

rest files to be compressed before transferring.
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Performance 
Prediction

Compression Time | Ratio; PSNR

The compression time/ratio prediction error is quite 

small and is in an acceptable range. The predicted 

PSNR has a higher error rate in some datasets but is 

still close enough in most cases.

The prediction overhead is small because we use 1% 

sampling. Using the whole quantization can slightly 

improve the prediction accuracy but the overhead 

would be too huge, taking more than 60% of the 

whole compression time.
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Parallel 
Compression
Compression performance can be hugely improved 

when given more compute nodes because data files 

are independent to each other, and the compressed 

files are small to write to disk. Decompression time 

will not necessarily decrease when given more 

compute nodes because writing so many large files 

simultaneously can cause I/O contention.
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Overall Improvement
We tested data transfer with Ocelot on three sites: Purdue 

Anvil, Argonne Bebop, and NERSC Cori. They have different 

network and compute node conditions. The overall transfer 

performance with lossy compression is hugely better than 

direct transfer, and the data quality is very good.
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Main Contributions
What can Ocelot do?

Performance Prediction
Ocelot can accurately predict the compression 

time/ratio and data quality (PSNR) with very small cost 

(by 1 % sampling). This ability helps automatically set an 

appropriate compression setting.

Data Transfer Improvement
Scientific data transfer can be greatly improved by 

applying lossy compression. File grouping and no-wait 

procedure helps improve network transfer efficiency.

Parallel Compression Discovery
The compression stage and decompression stage 

require different levels of parallelism  to reach maximum 

performance. 
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Future Work
What to do next?

Future 
Researches

Ocelot currently is only capable of predicting 

compression performance of SZ3 and its 

variants. There are other transform-based 

compressors like ZFP, T-THRESH that can be  

further studied to predict their performance.

Prediction for more types of 
compressors

We manually extracted a few features to 

predict the performance. There can be more 

features to explore, and methods without 

feature extraction to do the work.

Other Features
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