
Ocelot
Optimizing Scientific Data Transfer on Globus with Error-bounded Lossy Compression

Presenter: Yuanjian Liu

Authors: Yuanjian Liu, Sheng Di, Kyle Chard, Ian Foster, Franck Cappello

01
PART

Table of Contents

02
PART

03
PART

04
PART

05
PART

Why do we need

Ocelot in HPC

systems? How can

it improve current

research pipelines?

Motivation
What is lossy

compression and

what challenges

do we face?

Background
We focus on two parts:

(1) predict compression

performance; (2) reduce

the overall transfer time.

Method
We show that our

prediction method can

accurately predict the

compression

time/ratio, PSNR, and

Ocelot accelerates

large dataset transfer.

Evaluation
Ocelot can reduce the

overall transfer time

for large datasets by

applying lossy

compression.

Conclusion

01
PART Motivation

Motivation
WHY DO WE NEED OCELOT?

Lossy
Compression
PLUS
Globus Transfer

Large amounts of data are produced by High

Performance Computing (HPC) applications. They

need to be transferred among multiple sites for

analysis. Globus Transfer is widely used to address this

need.

However, there was not an effective way to integrate

lossy compression and Globus Transfer to maximize

the transfer performance. Ocelot is proposed as a new

framework for transferring data with lossy

compression.

Ocelot is one of the m
ost agile cats

01PART

Motivation
WHY DO WE NEED OCELOT?

Improve Research Pipelines

01PART

When involving compression into transfer, there are always three main parts for a
task: (1) compression; (2) transfer; (3) decompression.

Compression can reduce file sizes for a faster transfer, but it also requires
computation resources. There is a trade-off between compression and transfer. We
need a mechanism to ensure the integration of compression can improve
performance instead of weaken it.

Moreover, a bad compression setting can result in unusable data in lossy
compression. We need a way to figure out what setting is suitable.

02
PART Background

Lossy Compression
SZ, SZ2, SZ3, MGARD, ZFP, TTHRESH, etc.

There are mainly two types of lossy compression algorithms:

(1) prediction-based methods; (2) transform-based methods.

Our method applies to the first type of lossy compression.

Data Transfer
SCP, Globus Transfer

Globus Transfer applies GridFTP to provide more reliable,

secure, and higher-performance data transfer. There was

not any lossy compression involved in the transfer pipeline.

Compression Performance Prediction
Sian 2022

The prediction is based on derived values of sampled

quantization bins’ distribution and a fixed formula. It is only

correct on very limited datasets, and the fixed formula limits

the generalization possibilities.02PART

SZ3 Compression

Prediction Quantization

Predicting

Compression

Performance

Huffman
Encoding

The quantization code can be

significantly compressed by

huffman encoding if the

prediction stage is accurate.

Lossless
Compression

Lossless algorithms such

like run-length, or more

complicated ones like zstd,

bzip can further compress

the data.

02PART

Challenges
Ocelot faces 3 main difficulties

The compression is lossy, and we

need a proper setting to ensure

the data is still usable after

compression. We hope the

program can automatically

configure a valid setting based

on compression quality

prediction.

Lossy is a problem

The most accurate way to predict

the compression performance is to

run the compression, but we need

a faster way to obtain an

approximate result.

Prediction has overheads

We need compute nodes to

perform parallel compression,

but there might not be enough

idle nodes in a shared system.

Compute nodes may not

be available immediately

1

2 3
Overhead Resources

Valid
Compression

02PART

03
PART Method

Architecture

Modules In Ocelot
Ocelot is a complete framework for data loading, compression, transfer,

decompression, and compression quality prediction.

Ocelot is good at compressing datasets with many files by utilizing parallel

compression to reduce the total file sizes in a short amount of time.

Direct Transfer

Compression

Transfer

Decompression

100%

10%

25%

6%

Time Consumption

(numbers are only for illustration purposes)

Ocelot Overall 41%

03PART

Quality Predictor

Feature Extraction
We use features from 3 places: (1) config, (2) compressor, (3) data.

Compared to previous work, we use more features to capture the

characteristic of both data and compression algorithm.

Instead of proposing a formula to relate these features, we use a machine

learning model to find the hidden formula, which is more generalizable to

new datasets.

Moreover, the compressor-based features need to be extracted after the

quantization stage, which can be time consuming. We use a sampling

method to capture the features of a sample of the whole dataset to reduce

the prediction overhead.

03PART

The error bound will affect the predictability of

certain features. We use an ML model to handle

the complex relationships between the features

and the target.

Entropy vs Compression Time

The red dotted line is the predicted compression

ratio using the previous method (Sian). Because the

formula is fixed, it fails to cover many datasets that

do not follow that simple formula.

Compressor Features vs
Compression Ratio

03PART

I/O Optimization

File Reorganization
Globus Transfer uses multiple threads for data transfer. Transferring one

extremely large file or too many very small files will both be slow, as can be

verified through Table II. When compressing thousands of files in a

dataset, we need to reorganize the files to reach a better transfer

performance.

Our approach is to connect small files together into a large file. The

number of files and each single file size can be configured to match the

optimal performance for different sites.

Each raw file is independent to each other, and therefore we can utilize

parallel compression to handle this. The overhead for file reorganization is

negligible.

03PART

Resources Waiting

Don’t Wait!
In shared systems, the compute nodes are not always available

immediately when a transfer task initiates. If we wait for the compression

task to complete, it may stuck at waiting for compute nodes. Therefore, we

should directly start transferring a portion of the files without

compression if there are no compute nodes available.

Ocelot has a sentinel program monitoring the status of the compute node

waiting and the transfer service. It will start the transfer service if the

compute node is not immediately available. Once the compute node is

assigned, the sentinel program will kill the transfer service and allow the

rest files to be compressed before transferring.

03PART

04
PART Evaluation

Performance
Prediction

Compression Time | Ratio; PSNR

The compression time/ratio prediction error is quite

small and is in an acceptable range. The predicted

PSNR has a higher error rate in some datasets but is

still close enough in most cases.

The prediction overhead is small because we use 1%

sampling. Using the whole quantization can slightly

improve the prediction accuracy but the overhead

would be too huge, taking more than 60% of the

whole compression time.

04PART

Parallel
Compression
Compression performance can be hugely improved

when given more compute nodes because data files

are independent to each other, and the compressed

files are small to write to disk. Decompression time

will not necessarily decrease when given more

compute nodes because writing so many large files

simultaneously can cause I/O contention.

04PART

Overall Improvement
We tested data transfer with Ocelot on three sites: Purdue

Anvil, Argonne Bebop, and NERSC Cori. They have different

network and compute node conditions. The overall transfer

performance with lossy compression is hugely better than

direct transfer, and the data quality is very good.

04PART

05
PART Conclusion &

Future Works

Main Contributions
What can Ocelot do?

Performance Prediction
Ocelot can accurately predict the compression

time/ratio and data quality (PSNR) with very small cost

(by 1 % sampling). This ability helps automatically set an

appropriate compression setting.

Data Transfer Improvement
Scientific data transfer can be greatly improved by

applying lossy compression. File grouping and no-wait

procedure helps improve network transfer efficiency.

Parallel Compression Discovery
The compression stage and decompression stage

require different levels of parallelism to reach maximum

performance.

05PART

Future Work
What to do next?

Future
Researches

Ocelot currently is only capable of predicting

compression performance of SZ3 and its

variants. There are other transform-based

compressors like ZFP, T-THRESH that can be

further studied to predict their performance.

Prediction for more types of
compressors

We manually extracted a few features to

predict the performance. There can be more

features to explore, and methods without

feature extraction to do the work.

Other Features

05PART

The material was supported by the U.S.

Department of Energy, Office of Science,

Advanced Scientific Computing Research (ASCR),

under contract DE-AC02-06CH11357, and

supported by the National Science Foundation

under Grant OAC-2003709 and OAC-2104023.

We acknowledge the computing resources

provided on Bebop (operated by Laboratory

Computing Resource Center at Argonne).

Acknowledgement

THANKS!
Optimizing Scientific Data Transfer on Globus with Error-bounded Lossy Compression

Presenter: Yuanjian Liu

Authors: Yuanjian Liu, Sheng Di, Kyle Chard, Ian Foster, Franck Cappello

