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A story of the lossy compression
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A story of the lossy compression
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A story of the lossy compressmn

(A) RAW image 25M (B) JPEG image ~1M

University of Chicago Department of Computer Science

JPEG Compression

1. Video compression algorithms like H.264,
which is common format on Youtube, share
techniques found in JPEG compression.

2. Compression algorithms such as JPEG save
servers Zettabytes of storage, resulting in billions
of dollars in cost reduction.

3. JPEG is lossy compression
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A story of the lossy compression
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‘ What does a lossy compression do?

JPEG goes through and analyzes each section
of an image, finds and removes elements that
human eyes cannot easily perceive.

JPEG allows users to set a 'quality’ parameter

JPEG Options

Image Options
<l Cancel

Quality: 10 Maximum v
small file large file Preview

O 841.8K

Format Options
© Baseline (“Standard”)

Baseline Optimized

Progressive

‘ B8 -anooname |

(A) RAW image 25M (B) JPEG image ~1M
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A story of the lossy compression

(A) Quality=12, size=872KB (B) Quality=5, size=80KB (C) Quality=1,size=32KB
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A story of the lossy compression

There are 5 stages in the JPEG compression
algorithm:

1. Color Space Conversion

2. Chrominance Downsampling

3. Discrete Cosine Transform

4. Quantization

5. Run Length and Huffman Encoding

TBEE D,

Y=0.299R +0.587G + 0.114B
Cb=-0.1687R-0.3313G+0.5B + 128
Cr=0.5R-04187G-0.0813B +128

N Ml O ot

University of Chicago Department of Computer Science

Human eye: scheme

Iris Retina

Comea Fovea

Crystalline 7
lens ptic nerve

Vitreous humor

Photoreceptors: type and shape

RED

Low-intensity light,
monochromatic

GREEN

Low-intensity light,
monochromatic

Retinal rod Cone cell

The reason why JPEG works:
- Human eyes are better at perceiving
luminance (Ros), far less receptive at

chrominance (Cones).
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A story of the lossy compression

There are 5 stages in the JPEG compression
algorithm:

1. Color Space Conversion

2. Chrominance Downsampling

3. Discrete Cosine Transform

4. Quantization

5. Run Length and Huffman Encoding

Human Eyes are bad at seeing high frequency
elements: good at seeing edges, outlines, but
bad at distinguishing high-frequency color data
such as single blades of grass, individual
leaves, etc.
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A story of the lossy compression

There are 5 stages in the JPEG compression
algorithm: E41 E57]
1. Color Space Conversion A

2. Chrominance Downsampling -180 22 i3
3. Discrete Cosine Transform

4. Quantization

5. Run Length and Huffman Encoding
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A story of the lossy compression
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Apply similar ideas to scientific data

There are.5 stage; n the JPEG There are 4 stages in the SZ
compression algorithm:

1. Color Space Conversion compression algorithm:
: : 1. Prediction
2. Chrominance Downsampling

3. Discrete Cosine Transform 2. Quantization .
L 3. Huffman Encoding
4. Quantization

5. Run Length and Huffman Encoding 4. Lossless Compression

R -

Raw Data Compressed Data

Experiment Storage
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The procedure of SZ compression

Stage | | Stage 2 ‘ :taf?e 3 ftagle 4
e ot | uffman —> ossless
Prediction | Quantization ‘ Encoding | Compression

Data
Value

Compressed
Value

Encoded
Value

Predicted
Value

Figure 2.1: General procedure of prerequisite-preserving error-bounded lossy compression:
Constraint (A) is handled before the prediction step; constraint (B) is handled primarily in
both the prediction and quantization stage by replacing data points with Lorenzo-predicted
values; constraints (C), (D), and (E) are addressed by designing a new quantization method.
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Prediction Methods

(1) Lorenzo Prediction

X X * 3 x X X X X

X X X X X X X X X Already processed points
(including all colors)
X % N % X < * To be predicted point
X First layer
X—% X X >3 X—X
X Second 'ayer
X—X—¥—%—%—% . Thinc o
X Fourth layer
X 1-layer
X X 2-layer

XXX 3-layer
X X X X 4-layer
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Equal-sized data blo
in a 2D dataset
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Prediction Methods

(3) Interpolation Prediction

fi) () ()

value - v v

® Known points
diy dit1 | o Unknown points
-~ Interpolation

| L | | | L | N
i3 i1 i itl *3 index

Figure 2.4: Tllustration of Cubic Spline Interpolation

University of Chicago Department of Computer Science

O Unknown data points (to be predicted)
di Reconstructed data

di do d3 dy ds de d7 dg do

@® Known data points
d; Original raw data

Level 0 OQ-----—-——=————-——— . Use 0 to predict d1
Level 1 @-- - Use d4' to predict dg
Level2 @-------——-- ){)ﬁ —————————— “@-- Use d;' and dg' to predict ds

Level 3 @~ ~--2O“ - @~ --"20F--T@-- Usedr, ds, and dg'to
predict d; and d;

Level4 @~ @~ U @ - @&~ 1" @ Use d,, ds, ds', dr', and dg’
to predict dy, ds, ds, ds

# of levels = [loga(n)] +1

Figure 2.5: Illustration of Multilevel Linear Spline Interpolation
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Quantization Code

2m-1
Quantization Methods
2*Error Bound—= 22
N 5
—:—— Real Value
P ~~__ 2*Error Bound— 2mi+l
29=1001 Jm—— - e L 1
7 14__>< L
(] /// 12 I:I \\\ \\\ Firstiphase - Error 2
_g %6=6 T JENSE l:l \\ \\ Predicted Value } e
(>“ Y/ O| |\| 10| | \L % — T
I ; \
tD“ }‘ '20| | 5 5 8| | 38 l:l \\\ 2*Error Bound— il
R o [ B et
e= —_
/|-60 | | 4| | 26 | | 238 ] i
/
2e=20 I -80| | 2| | 20 | | 138 I 2*Error Bound— 2m1-2
-100 0 14 38 . '
Range 0 Range 1 Range 2 Range 3 !
(A) Multi-range Quantization (B) Single-range Quantization
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Diverse Constraints in Scientific Data

Table 3.1: Examples of user-required constraints applied to scientific simulation datasets

No. User-Required Constraints Science Domains

(A) Isolating irrelevant value Climate, Weather, etc.

(B) Preserving global value range Climate, etc.

(C) | Preserving value-interval-based error bounds Weather, Cosmology, etc.
(D) Preserving multiregion-based error bounds | Weather, Seismic imaging, etc.
(E) Preserving irregularly shaped regions Hydrodynamics, Weather, etc.

% This thesis proposes five constraints and the goal is to increase compression ratio by dropping
some information while still respecting constraints.

% Ideas to acheiving the goal given the five constraints
> (A) allows us to smoothen data by picking out irrelevant data;
> (B)is asimple but necessary requirement for post-hoc analysis
> (C)(D)(E) all allow us to lossen the error bound of a subset of the data
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The Importance of the Constraints

We use 120 to

PSR ETS Clear Irrelevant Data with

for visualization Lorenzo Predictor Without cleaning the irrelevant
4 data, the smoothness of data
120 4 O 0 0 0 © 0 0 SO OO O B O O 9 9 8 ® 00 . . .
- values will likely be distorted.
100 - W
o p 301
«g 80 Irrelevant Data g
g N Nibtiial dita gzs- The wrelevant_data constraint
allows us to pick out them and
40 - ‘/R 26 - use methods to substitute their
5| CERTEREIEDN OXDEWDL A N value during compression so
50000 52000 54000 56000 58000 60000 50000 52000 54000 56000 58000 60000 that we can dea| Wlth data Wlth
index index

better continuity.
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The Importance of the Constraints

I 3

BN 0.
L os
- Jos
L dos

| 03

(A) Visualization of the decompressed data (B) Visualization of the original data

Figure 3.1: Without preserving the global range, the color mapping shifts, causing significant
different visualization result compared to the original image.

University of Chicago Department of Computer Science

The global range constraint is
quite necessary in some
analysis but not supported by
existing compressors.

Without preserving the global
range, the generated heat map
will look very different
compared to the original data
because during compression,
some points will have values
lower than the global minimum
or higher than the maximum.
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Problem Formulation

(A) and (B) are the actual constraints
we need to comply.

(C) (D) (E) give the possibilities to
vary the error bounds during
compression.

This thesis is the first to address the
possibilities to vary error bounds
during error-bounded lossy
compression by proposing three
different approaches in different
circumstances.

University of Chicago Department of Computer Science

N. szwoj(damType)

SZ"’PCO"lpl "ession

Maximize p

subject to user-required constraint

CONSTRAINT (A): Preserve and isolate d; ¢ |Rmin, Rmaz]

max(d;) = high(r(D))

CONSTRAINT (B): Preserve R
min(d;) = low(r(D))

CONSTRAINT (C): |d; — d;| < e(d;)

CONSTRAINT (D, E): |d; — d;| < e(LOC(d;)),
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Some Challenges

7

% Challenges exclusive to varying error bound compression

> prediction methods like Linear Regression require blockwise compression. When the data
are separated to blocks, if the neighboring blocks have different error bounds, the block
boundary will be obvious, casuing artifacts in visualization results.

> quantization code is just an integer. Without careful design, the compression and
decompression stage can easily desynchronize and cause compression error.

> tousers, itis not always clear how to vary the error bounds.
/

% Solutions

> This thesis proposes using interpolation prediction without the requirement to build data
blocks to solve the blockwise artifact problem.

> This thesis designs three algorithms to adapt to different use cases, and proposes a
method to extract meaningful varying error bounds from the data.
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How to vary the error bounds?
Algorithm 1 MULTI-INTERVAL (QQUANTIZATION IN COMPRESSION STAGE
T Input: user-specified intervals and error bounds &
e g Output: compressed data stream in form of bytes
L ~~e \\\ 1: for each data point d; do
o 14 os N 2: Use the composed prediction that combines Lorenzo predictor and linear regression predictor to obtain
) // 12 I:] \\\ \\\ a prediction value p;.
E AT~ I:] \\\ \\ 3: I, < r(p;). /*Obtain interval index of p;*/
© ;0 y 10:] \, \ 4:  I; < r(d;). /*Obtain interval index of d;*/
5 .20 ! |8 38 \ 5. if I; == I, then
7 -40| | 2 6| | 32 I | \l/ 6: ground( (;l;(_jit)))‘/*Quantizcd distance between d; & p;.*/
o | | | | | | 7. elseif I; > I, then
/ »
i 'GOI | 4| | 26 l | 238 | 8: b= Zfi;,l | 2158) /*Count bins for middle intervals.*/
'Sol I 2| | 20 I | 138 I | 9: t, = ‘round(%). /*Get quantized distance for I,.*/
A
-100 0 14 38 10: tg = round(%). /*Get quantized distance for I;.*/
Range 0 Range 1 Range 2 Range 3 11: q=1t+1t,+tq. /*Get the logic quantization code.*/
12:  else ]
13: e Z{’:;dl 41 2"5(‘:) /*Count bins for middle intervals.*/
MethOd 1 MUIt|p|e Value |nterva|S 14: t, = round(%));d). /*Get quantized distance for I;.*/
. E. — pi—low(I,) * ] wiiti 15t *
EaCh haS its own error bou nd The 15: ta round(—““p) )z [ Cct‘ qufmtlz‘od fhstfmce for I,.*/
. 16: q=1t+1t,+tq. /*Get the logic quantization code.*/
compressor uses different error 17 endif
. 18: ¢ < q + R. /*Shift quantization code.*/
bound according to data value. 19: end for
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How to vary the error bounds?

Method 2: Multiple regions. Each region has its own
error bound. The compressor uses different error bound
according to data indexes.

A A i e R e S e M o @eb=0.01
82 @7 Q,Q 7@ 7©7 7©7 !J @ eb=0. 05
8l Q.QQQ..:?:::
©WM0000®Os

30 31 32 33 34 35 367

Figure 5.4: Illustration of bitmap error bound setting: Use an index to represent the error
bound for each data point, and use a separate array to store all possible error bounds.

Method 3: Bitmap. Each data point corresponds to a
position in the bitmap. The compressor uses the
designated error bound for each data point.

University of Chicago Department of Computer Science
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-
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2D
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Figure 5.3: Constraint(D) region selection for 1D, 2D, and 3D data: In 3D cases, each region
can be specified with seven parameters: the starting positions (3 parameters), the length of
each direction (3 parameters), and the error bound (1 parameter).
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Evaluations

Table 6.1: Basic dataset information All time evaluations are performed on
Dataset # Fields | Dimensions | Science Argonne Bebop Machine. There are
QMCPACK 1 33120x69x69 | electronic 664 nodes in the cluster, each having
th“mtumat i 36 cores with 128GB DDR4 memory.
molecules, and This cluster uses Intel Xeon
solids E5-2695v4 CPU.
RTM 1 449x449x235 | Electronic
Miranda 7 256x384x384 | hydrodynamics .
code for large Compression
turbulence
simulations
CESM 79 1800x 3600 Climate
Nyx 6 512x512x512 | Cosmology
Hurricane Isabel 13 100x500x500 | Weather
Hurricane Katrina d 162x417642 | Weather
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Ignore Lorenzo & Bitmap
B Zero & Quant BN Preprocessing
= 8 B Zero & Bitmap BN Decompression
. ; B Lorenzo & Quant
Isolating Irrelevant Data
Table 6.3: The 5 fields tested in the hurricane dataset é a1
Field Description Value Range 15 I I
P Pressure (weight of atmo- | -5471.8579/3225.4257 2 I [ I I | 1 I " I
sphere above a grid point) | |
TC | Temperature (Celsius) -83.00402/31.51576 P Ll PR W
U X wind SpCCd (pOSitiVC _79_47297/85_177()3 (A) Compression Time Comparison of Irrelevant Data
means winds from west to Handliog Method
{e e e o U 30
cas) B
\% Y wind speed (positive | -76.03391/82.95293 251 wmm zero & Bitmap
means winds from south ;“%20 = i
to north) L
W Z wind speed (positive | -9.06026/28.61434 ¢
means upward wind) §10]
. . . . 5
This thesis uses either zero or Lorenzo predicted data
to substitute the irrelevant data and uses either one Sl T vooow
. f . . . Field of data
quantization bin or a bitmap to record the indexes of the (B} Compression Ratio Comparison of Irealevant Data
irrelevant data. Handling Method

University of Chicago Department of Computer Science g I.O b Uus 6 la bS



Multiple Value Interval

Table 6.4: QMCPACK RMSE & PSNR Comparison

Method Range | eb | RMSE | PSNR

[-17, -8] 0.232 43.067
Global Range | [-8,-5] | 0.4 [0.233 | 43.041
CR=210 -5, 17] 0.051 56.159

-17,-8] | 1.0 | 0.538 35.747
Multi-Intervals | [-8, -5] | 0.15 | 0.086 | 51.623
CR=210 [-5,17] | 1.0 | 0.089 51.354

Table 6.5: Miranda density RMSE & PSNR Comparison

Method Range |eb | RMSE | PSNR
(0.5, 1.4] 0.012 44.804
Global Range | [1.4, 2] | 0.07 | 0.036 | 34.801
CR=206 2, 3.5] 0.015 42.379
[0.5,1.4] | 0.1 | 0.013 43.5813
Multi-Intervals | [1.4, 2] | 0.05 | 0.027 | 37.193
CR=207 12; 3:5] 0.1 |0.018 40.682

University of Chicago Department of Computer Science
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(A)Global Range; CR=210;
[-17, 17] eb=0.4;
RMSE[-8,-5]=0.233, PSNR=43.04

(C)Original Data
100000 |

|
80000 | Higher Precision

in this range

|
60000 |

|
40000 |

III..

80 =75 -70 -65 -6:5" -5.0

Fewer Artifacts

2.00 * 1
1.75 |

1.
o0 Interesting |
b= 1.25 Range |

I
| i
| Although the majority
€ |
3 1.00 Il
|
|
|

data gather around 0,
the interesting data
are sparse
Oors |
0.50 |
0.25 |

1

& N » &b b b b 4 e

0 10 20 30 40 50 60
(B)Multi-Ranges; CR=210; [-17, -8)
eb=1;[-8, -5) eb=0.15; [-5, 17) eb=1;
RMSE[-8,-5]=0.086, PSNR=51.35

QMCPACK data

45 -10' 5 0 5 10 15
QMCPACK Data Value

(D)Data Distribution
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Multiple Value Interval

Table 6.4: QMCPACK RMSE & PSNR Comparison

Method Range | eb | RMSE | PSNR
[-17’ -8] 0.232 43.067 0 50 100 150 200 -250 300 350 0 50 100 150 200 250 300 350
Global Range [-8, -5] 0.4 0.233 43.041 (A)CR=206;Global Range and single error (C) Original data
= bound: [0.5, 3.5) eb=0.07; 100000
CR=210 -9, 17] 0'951 5?’159 RMSE‘)[:.4,2]=05.0§65:)PeSNIg=g4.801 aoom: SighnrFrvciaion :
-177 '8] 10 0038 30747 Improve: Use a tighter error bound for the : in this range :
Multi-Intervals | [-8, -5] | 0.15 [ 0.086 | 51.623 horssie e ard b eterpresions. Wmﬂm ) |
R0 (5 17] [ 10 [00%9 | Bl 3 - e - T
Fo Ll Fewer Artifacts 20000 AHARERREERHE A SRR RS AR H: -.m
® aag ' 0L
Table 6.5: Miranda density RMSE & PSNR Comparison . :vs "’ :'7 s
Method Range |eb | RMSE | PSNR "’ e |
[0.5, 1.4] 0.012 | 44.804 : o
Global Range | [1.4, 2] | 0.07 | 0.036 | 34.801 " égg ! |
CR=206 2, 3.5] 0.015 42.379 ' i : :
[0'5’ 1'4] 0.1 0.013 43.5813 FB)Cz):Zg;; rl:zltzi(-);a::esazo?o.;ol.4) 00 1.00 1.25 I1,50 175 2.l>o 225 2.50 2.75 3.00
Multi-Intervals | [1.4, 2] | 0.05 | 0.027 37.193 eb=0.1; [1.4 2) eb=0.05; [2, 2.8)eb=0.1; Miranda Data Value
CR=207 2, 3.5] 01 10018 40.682 RMSE[1.4,2]=0.027, PSNR=37.193 (D) Data Distribution

Miranda data
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Multiple Regions

S-400 $-300 S-200

y

B

(A) Oursol (CR=54): multiple regions, create a
small region-box for each significant region [190 0
0:20 69 69], [290 0 0:20 69 69], [390 0 0:20 69 69],

and give each region a dedicated error bound.

(B) Original Data: the value ranges for the
demonstrated regions are different, and each
region requires a different precision to have a

good visualization result.

S-400 $-300 $-200

(C) SZ3 All-0.01 (CR=27): the old method
cannot take care of all regions. Even when
giving a quite tight error bound 0.01, some

regions will be hugely distorted.

Figure 6.8: QMCPACK visual quality comparison: Each slice has 69x69 pixels. We select
slice 200, 300, and 400 to observe the visual distortion because each has a different range:
slice 200 has range [-0.06, 0], slice 300 has range [-0.0016, 0], and slice 400 has range [-0.0025,

0.0005].

University of Chicago Department of Computer Science
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Compression Time Compression

Table 6.7: Compression Time and Overhead of Interval/Region/Fallback Methods

Method | CESM | QMC | RTM | MIRAN | NYX | ISAB
B Biterya) Interval(s) 020 539| 1.20 1.08 | 570 | 1.08
5 - — s:l?;‘;’c‘k Region(s) 019 494| 1.18 1.03| 546 1.01
Fallback(s) 0.18 4.80 1.12 1.00 5.18 0.96
44 Interval% 8.9% | 12.3% | 71% 6.8% | 10.0% | 13.0%
& Region% 3.3% | 3.0% | 5.4% 1.9% | 54% | 5.7%
£
F 0 09 0y T T T T 0.15
2 200 08 200 — 1M ..
400 0.7 400 —
600 | 06 ol | 41°"
11 800 0.5 800l : i o
1000 | Fd 04000l — — — J 4L 008
1200 S 0.3 1200 L |
CESM  QMCPACK RTM Miranda NYX ISABELA {466 02 10 o
Dataset | -
1600 [ 01 4500 B Y
1800 0 4500 L - L - : - - 0.2
0 500 1000 1500 2000 2500 3000 3500 0 50 1000 1500 2000 2500 3000 3500
(A) CLDHGH Data(1800x3600): The climate data (B) The difference image using region-based
map, the shape of which corresponds to the compression

geolocations on earth.
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In some datasets, geospatial information can
be mapped from data indexes.

Land and ocean naturally may have different
scientific significance and we can extract
such information from the data and build a
bitmap to set different error bounds to each
part.

(B)FREQSH

Users do not need to set the error bounds
themselves in this scenario.

~ owBH @SN (FILANDFRAC

Figure 6.12: Six Fields in CESM: the visualization indicates that bitmap-separated precisions
may be suitable to compress these fields.

University of Chicago Department of Computer Science g I.O b Uus 6 la bS




Extract Irregular Regions from data

_ , . Data Field | Setting CR|[CR [PSNR|PO |P1

Table 6.8: Compression Setting Definition CLDLOW | A: ¢b=0.01 o1 |- 14.94 | 46.74 | 49.59
Setting Description min=-0.1 [ B: eb=0.01, 0.1 |30 |29.0 | 20.71 | 46.74 | 29.73
. =1 C: eb=0.01 138 | - 4714 | 49.23[51.26

A SZ2.1 [Liang et al., 2018a]: Lorenzo o D cb=001, 0.0 | 221 | 7766 [ 3231 w22 |2
& Linear Regression Predictor with FREQSH | A: ¢b=0.01 16 |- 4473 | 46.76 | 48.97

one global eror bound et~ [ le e oping

B Use SZ2.1’s predictor, but adopt two D: eb= 0.01, 0.1 | 126 | 109.5 | 32.10 | 48.83 | 32.13
error bounds set by a bitmap array LHFLl)é() gi elbzi - ig - iggz g;-gg 2‘91-55

" . min=- : eb=1, 5. : : .55

C Interpolation based Compression max=600 | C: eb=1 106 | - 62.41 | 64.58 | 66.40
with one uniform error bound [Zhao D:eb=1,10 [ 216 | 171.6 | 47.81 | 64.63 | 47.84

et al., 2021] PBLH A: eb=5 37 |- 53.04 | 55.20 | 57.07

s . min=0 B: eb=5, 15 45 | 427 | 4772 | 55.20 | 4855

D The proposed region based error max=1600 | C: eb=5 107 |- 55.03 | 57.24 | 58.99
bounded compressor with two error D= 8 15 19 D [ 2090 |IB3-20 | <93

PTess TSMN A: eb=1 66 |- 4478 | 47.04 | 48.64

bounds set by a bitmap min=200 B: eb=1, 10 191 | 155.4 [ 36.19 | 47.04 | 36.51

max=310 | C: eb=1 202 | - 4714 | 49.41 [ 50.99

D: eb= 1, 10 812 | 4115 | 31.64 | 49.24 | 31.66
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Scalability Test

BDW Stacked Time Comparison

BDW Scability Test CP/DP time comparison

10 A1
B CP Time —8— Multi-interval Compress
go { ™= DP Time ~8— SZ Compress
B Write ZIP 9 { —®— Multi-interval Decompress
= Write DP SZ Decompress \/‘_\'
60 Read ORG ° D¢
A _ 81
O o
[ Q
E £
= 40 E 74
20 4
;] ,\/\/
0- T T T T T T T T
600 900 1200 1500 1800 2100 600 800 1000 1200 1400 1600 1800 2000

Number of Cores

Number of Cores

Figure 6.13: BDW partition: for each pair of bars, the left side is multi-interval solution’s
result, and the right side is SZ’s result. CP/DP Time are compression/decompression time
respectively. Write ZIP /Write DP are the /O time to write the compressed /decompressed
file respectively. Read ORG is the time to read the original file.
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Summary

% Multi-interval/region error-bound-based compression can significantly improve the
visual quality for users with the same or even higher compression ratios.

% Evaluation for the bitmap-based solution shows that the cost to satisfying a

customized complex region requirement is acceptable and the proposed solution

can possibly be generalized to suit all kinds of fine-grained error bound settings.

Experiments on a supercomputer - Argonne Bebop with up to 3500+ cores show

that the proposed multi-precision lossy compressors have a very good scalability.
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Future Work

7/

% Predict the (de)compression time
> Using machine learning algorithms to predict the (de)compression time on a specific machine.
> The main challenge is to extract effective features from data in a short amount of time.

% Predict the compression ratio

> Using some mathematical deduction to estimate the prediction accuracy, quantization bin

distribution, and huffman coding size to predict the compression ratio.
7/

% If compression time and ratio can be relatively accurately predicted, it is possible to
design efficient methods to transfer data.
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Thank you!

Questions?

yuanjian@uchicago.edu
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