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ABSTRACT

Large volumes of data generated by scientific simulations, genome sequencing, and other

applications need to be moved among clusters for data collection/analysis. Data compres-

sion techniques have effectively reduced data storage and transfer costs. However, users’

requirements on interactively controlling both data quality and compression ratios are non-

trivial to fulfill. Lossy compression methods need to respect several data constraints to be

useful in a realistic data transfer scenario. In this thesis, I propose a novel Compression-as-

a-Service (CaaS) platform called GlobaZip with five important contributions: (1) a multi-

interval/multi-region based compression algorithm that supports several data constraints to

further limit the distortion in data fidelity even though the compression is lossy; (2) a layer-

by-layer compression technique that allows much higher parallel compression rate in HPC

systems and can coordidate CPU cores on multiple compute nodes to compress extremely

large files without out-of-memory errors; (3) a decision tree-based compression performance

prediction model that allows users to use very limited computation overhead to estimate

compression characteristics including compression ratio, time and data fidelity; (4) an opti-

mized reference-based genome sequence compression algorithm that exeeds the performance

of state-of-the-art algorithms by using more fine-grained sequence alignment procedure, re-

ordering reads, a novel dominant bitmap method for quality score compression, and a few

other small optimizations; (5) a Qt5-based user-facing app that utilizes Globus Compute

and Globus Transfer to provide users with a universal interface to orchestrate remote data

compression and transfer. Experiments on multiple real-world datasets on geographically

distributed computers show that GlobaZip can significantly improve data transfer efficiency

with a performance gain of more than 10x in computing clusters with relatively slow net-

works.
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“I am enough of the artist to draw freely upon my imagination. Imagination is more
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CHAPTER 1

INTRODUCTION

Large amounts of data are being produced by high performance computing (HPC) sim-

ulations and advanced instruments such as the Advanced Photon Source (APS) [26] and

LCLS-II [58]. Researchers use many types of compression algorithms to reduce sizes for

these data. Lossless compression algorithms can keep 100% data fidelity but the storage

reduction is very marginal (1.5x-2x). However, lossy compression can significantly reduce

the data sizes (10x-1000x+) with configurable error thresholds. Theoretically, there is no

limit to the compression ratio in lossy compression algorithms if users allow a very high

error bound, but the data will become unusable after a certain point. Due to uncertainty

about the ‘certain point’, users may not be confident about using lossy compression, fearing

it may lead to inaccuracies in downstream analysis. How to obtain both high compression

ratios provided by lossy compression algorithms and certainty about data usability remains

an open question.

The application of lossy compression for data transfer optimization has seen signifi-

cant success in the video and photography industries with compression algorithms including

JPEG [92], H.264 [15], and H.265 [84]. For example, an 80 GB video file can be compressed

to around 800 MB using H.264, reaching a compression ratio of almost 2000. Video distribu-

tion platforms like YouTube can deliver similar quality content to users with 1/2000 of the

original data. This data reduction technology saves billions of dollars. If similar approaches

can be applied to scientific data, we can expect similarly large reductions in bandwidth and

storage.

In addition, these data are typically needed to be shared for analysis, storage, publi-

cation, and archival purposes, often between multiple research institutions. However, data

transfer over a wide area network (WAN) can be time consuming and significantly delay re-

search progress. Tools such as Globus [13, 67], widely adopted in computing facilities (e.g.,
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supercomputers), can accelerate transfer, but with such enormous datasets, transfer times

can still be very long.

A large number of scientific datasets are floating point number-based[46][76][41][72], and

often allow a certain level of imprecision in the data for the application to yield the same

or similar results. Thus, it is possible to reduce the data size by reducing the precision

in a controlled manner. Error-bounded lossy compression exploits this fact and offers the

potential to significantly reduce data sizes. However, the optimal tuning of the compression

process (i.e., for performance and quality) remains an open problem, and thus such methods

are rarely used in data transfer situations. Although error-bounded lossy compression can

substantially reduce data volume with user-tolerable data distortion, existing studies focus

on conventional use cases such as reducing storage space [106], lowering I/O cost [55], or

reducing memory capacity requirements [94, 43]. Li et al. [51] studied how to make the

error-bounded lossy compressor SZ resilient to soft errors during data transfers and evaluated

their approach by using a numerical analysis / simulator, but did not systematically model

and optimize data transfer performance with respect to lossy compression techniques.

Many other lossless and lossy compressors have been developed to address the big data

issue. However, they cannot be used directly or effectively for remote parallel data transfer

tasks due to the following substantial drawbacks.

Limited/missing support for multi-node parallel compression. Off-the-shelf

error-bounded lossy compressors lack efficient support for using processors on different com-

pute nodes, which may significantly limit their parallel compression performance. On the

one hand, the vast volume of data produced by many applications necessitates parallel com-

pression across multiple nodes to complete the process within a reasonable time frame. On

the other hand, the memory capacity of a single node is typically inadequate for most ex-

isting compression algorithms to handle some extremely large data files. To enable large file

compression on multiple nodes, the algorithm should work with an efficient method that can
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split the files appropriately and coordinate processors on different compute nodes.

Unable to meet users’ diverse requirements for compression quality. Although

error-bounded lossy compressors have been effective in many applications, existing compres-

sors are developed/driven based on relatively simple error control methods such as absolute

error bound, inevitably leaving a significant gap in user requirements on the reconstructed

data quality. Users often need to visualize the reconstructed data to determine whether they

are valid in practice. Error-bounded lossy compressors, however, may introduce undesired

artifacts in the reconstructed data, which is a non-trivial issue as the artifacts are related

to many factors such as datasets, compressor design, error-bound types, and values. As

such, enabling users to interactively check the quality of compression in real time and adjust

compression parameters timely is a substantial feature to guarantee user requirements on

compression quality.

Limited/missing support for diverse types of datasets/files. In the data reposi-

tories, there are diverse types of scientific datasets. While the existing error-bounded com-

pressors are suitable for many simulation datasets, they are not suitable for other types of

data. For example, genome sequence data consist of text-based sequence identifiers (e.g.

ATCGGC...), which cannot be well compressed by conventional error-bounded lossy com-

pression or binary-level lossless compression. Based on biological DNA similarity, dedicated

reference-based compression algorithms can be much more efficient in this situation. More-

over, we note some inefficiency in the sequence alignment process and the compression of the

quality score of existing genome sequence compressors such as Genozip [48]. On the other

hand, existing error-bounded compressors such as SZ [53, 57] and ZFP [59] are not qualified

for parallel (de)compression of very large files each of which is composed of one single tensor

(or variable).

The primary goal of this work is to research and create a workflow for scientists to transfer

data between computing clusters faster while maintaining data usability when applying lossy
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compression in the process. The thesis is organized into the following five research questions:

1. How to ensure data constraints are met when compressing data?

2. How to parallelize compression/decompression when more computation resources are

available?

3. How to preview the decompressed data quality without doing full-length compres-

sion/decompression?

4. How to compress genome sequence data that does not follow the traditional character-

istics of error bounded compression?

5. How to orchestrate the compression/decompression and transfer on multiple computing

clusters?

1.1 Thesis statement

Hybrid lossy compression methods can improve overall data transfer efficiency

while maintaining downstream application performance. In this thesis, my goal

is to provide an optimized scientific data transfer solution that considers performance and

accuracy tradeoffs of dynamic lossy compression.

I first explore ways to ensure certain data constraints are met for the reconstructed data

by designing lossy compression algorithms that preserve multiple error bounds on various

value ranges and regions. To help users understand characteristics of the decompressed data,

I explore methods to predict the compression performance (compression ratio, time, peak

signal-to-noise ratio, etc.) with minimal overhead costs. To aid the selection of the most

suitable compressor and make users more confident about the compressed data quality for

a given dataset, I explore an interactive compression paradigm, where users can preview

a certain part of the raw data as well as the decompressed data generated by multiple
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compressors with a visualization method. For extremely large datasets, I explore ways

to utilize multiple compute nodes to collaboratively compress a single large file without

exceeding resource constraints. I also explore compression methods for some special types

of data that cannot be compressed well by error-bounded compression algorithms, including

genome sequence data.

Finally, I combine all the proposed algorithms and mechanisms into an intelligent and

scalable Compression-as-a-Service (CaaS) framework, GlobaZip, to be shared with the sci-

entific community. This thesis expands upon substantial prior work [64, 65, 66, 63].

1.2 Contributions

The primary contribution of this thesis is the development and evaluation of a CaaS frame-

work, GlobaZip, that builds on Globus data transfer and Function-as-a-Service (FaaS) capa-

bilities. GlobaZip provides users with a universal graphical user interface for interactive con-

trol of compression/transfer of diverse datasets with multiple compression methods among

computing clusters. In building, optimizing, and evaluating different compression algorithms

over the past five years, I discovered and addressed research gaps in the transfer of large

amounts of scientific data using lossy compression data. This thesis offers key insights into

the design and evaluation of compression/transfer systems, both with regard to the overall

usability and system performance. The findings are presented in the context of GlobaZip,

comparing each individual component with the state-of-the-art methods and introducing

my novel design and software stacks. In more detail, my contributions for each of the five

research questions are as follows.

1. A constraint-based error-bounded lossy compression model The requirement

of data fidelity for an application often involves more characteristics than a simple error rate

for each data point. Users may have more sophisticated and complicated requirements for

certain datasets. Therefore, we first define and apply several data constraints that the com-
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pression model needs to respect and propose a lossy compression model. This compression

model is the first of its kind, to the best of my knowledge. The data constraints include (A)

isolating irrelevant values; (B) preserving global value range; (C) preserving multi-interval-

based error bounds; (D) preserving multiregion-based error bounds; and (E) using a bitmap

to mask complicated regions and apply different error bounds on each region. I also develop

an efficient mechanism allowing users to interactively set multiple error bounds at different

value ranges or regions for floating-point tensors, which is critical to meeting diverse user

requirements.

2. An efficient multinode compression method with a layer-by-layer technique

To compress extremely large tensors that cannot fit in the memory, I design a layer-based

compression technique that allows thread-type and MPI-type parallelization. The thread-

type parallelization is simple to run on any cloud servers which can utilize the available

CPU cores on a single machine, while the MPI-type parallelization allows users to involve

multiple compute nodes in a high-performance computing (HPC) system to further reduce

the compression time of extremely large files.

3. A lightweight decision tree-based compression performance prediction

model I use data-based, config-based, and compressor-based features to train a decision

tree model to predict compression ratio, compression time, and peak-to-noise ratio. I also

provide an interface for users to preview the data quality of selected layers and allow users

to compress only certain layers to get an overview of the decompressed data quality without

doing full-length compression/decompression.

4. An optimized reference-based genome sequence compression algorithm As

there are various types of data stored and processed on computing clusters, not all data can

be compressed using error-bounded compression methods. Genome sequence data are one

of this kind. I propose a novel reference-based genome sequence compression algorithm with

an improved sequence alignment technology and a bitmap-based quality score compression

6



method, the performance of which exceeds the state-of-the-art algorithm Genozip.

5. A Qt5-based GlobaZip app with remote orchestration capabilities I de-

velop the app with Globus Transfer and Globus Compute support and allow users to run

compression/transfer/decompression across multiple remote computing clusters. I conduct

experiments and benchmarks on multiple real-world datasets and demonstrate GlobaZip’s

powerful capability to efficiently orchestrate data compression/transfer across heterogeneous

supercomputers/clusters over WAN. Experiments show that performance improvement ex-

ceeds 10x when transferring data from supercomputers to typical cloud computing clusters.

1.3 Thesis Organization

Chapter 2 presents the research background and fundamental related work in data compres-

sion, transfer, remote orchestration, and addressing users’ demands. Chapter 3 focuses on

describing the methods I propose to solve the aforementioned research questions. There are

6 sections, each solving a dedicated problem: section 3.1 defines the data contraints and

methods to preserve them; section 3.2 explores ways to preview data quality and feature-

based solution to predict compression performance; section 3.3 elaborates the design of my

novel reference-based genome sequence compression algorithm; section 3.4 introduces my

layer-by-layer compression technique and the corresponding implementations; section 3.5

and section 3.6 report on my GlobaZip framework design and methods for optimizing data

transfer via error-bounded lossy compression. Chapter 4 presents the evaluation results for

each of the proposed methods. Chapter 5 discusses potential future work. In Chapter 6, I

summarize and conclude the thesis with some remarks.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The proposed lossy compression methods mainly deal with floating-point number tensors and

genome sequence data. Floating point tensors are the major outputs of scientific applications

and also represent the most substantial storage demand within deep learning models. Error-

bounded lossy compression can significantly reduce the sizes of floating-point tensor data.

However, there is an increasing demand for storing and transferring human genome sequences

within computational facilities, with the prospect of affordable DNA sequencing technologies.

To achieve high compression ratios, it is not likely to propose a general lossy compression

method to fit all types of data, as do lossless compression algorithms. Dedicated compression

algorithms are needed for different types of data. Therefore, to optimize data transfer

performance, we need a mechanism to orchestrate multiple types of compressors in the

pipeline. This section explores the latest advancements in compression technologies for the

mentioned data types, alongside recent initiatives to streamline the orchestration of remote

tasks.

2.1 Error-bounded Lossy Compression

Data compression is widely used in scientific research, for example, to reduce the size and

cost of data storage and transfer. Data compressors are typically divided into two classes:

lossless compression [110, 33, 11, 8] and lossy compression [53, 57, 59, 60, 100, 32, 55, 99,

62, 88, 52, 91]. The former does not introduce data loss during compression, but suffers

from very low compression ratios (generally 1.1-2 [83, 78]). The latter can achieve very high

compression ratios (such as 100+) [53, 57, 59, 54], but potential data loss can distort the

results of the analysis.

To address data loss concerns, researchers have studied error-bounded lossy compressors
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[22] for scientific data, which can be split into two main categories: the prediction-based

compression model and the transform-based compression model. SZ [53, 57, 54] is a typical

prediction-based lossy compression model, which is composed of four key stages: data pre-

diction, linear-scale quantization, Huffman encoding, and lossless compression. ZFP [59] is

a typical compressor designed based on the transform-based model, which includes four key

steps: splitting the dataset into fixed-size blocks, exponent alignment in each block, orthogo-

nal data transform for each block; and embedded encoding for each block. These techniques

play a crucial role in minimizing storage requirements, as evidenced by their applications in

various domains such as molecular dynamics simulations [86], quantum computing [94, 93],

and supercomputing environments [55]. By efficiently compressing data while ensuring that

the error introduced during compression remains bounded, these methods not only can

mitigate memory demands but also alleviate I/O expenses in high-performance computing

settings. Furthermore, they can eliminate the need for costly data recomputation [32].

Existing error-bounded lossy compressors offer different types of error bounds to address

diverse user demands. The most common error-bounding approach involves using an absolute

error bound, which ensures that the pointwise difference between the original raw data

and reconstructed data is confined within a constant threshold. Many compressors such

as SZ [53, 57, 54], ZFP [59, 24], and MGARD [4] support absolute error bounds. Other

error-bounding approaches have been explored to adapt to diverse user requirements. For

example, SZ supports pointwise relative error bounds [101, 23]; and Digit Rounding [20],

Bit Grooming [100], zfp [59], and FPZIP [60] support a precision mode that allows users

to specify the number of bits to be truncated at the end of the mantissa, to control data

distortion at different levels.

To satisfy user demands on a specific quality of interest, researchers have recently studied

how to respect some specific metrics. For example, Tao et al. [85] developed a formula that

can link the target peak signal-to-noise ratio (PSNR) metric to an absolute error bound
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setting in SZ such that the data can be compressed based on a user-specified PSNR metric.

MGARD [4] supports various norm error metrics and linear quantities of interest in its multi-

grid compression method. However, none of the existing error-bounded lossy compressors

allow users to set particular constraints in the error-bounded compression, and hence impose

a significant impediment on the practical use of such compressors. In fact, users often have

diverse precision demands for various data value intervals or specific requirements on differ-

ent spatial regions, which are determined by their sophisticated post hoc analysis purposes

and quantities or features of interest.

Prediction Quantization Huffman 
Encoding Compression

Predicted
    Value

 Data 
Value

Encoded
   Value

Compressed 
Value

Quantization

      Code

Stage I Stage 2
Lossless

Stage 3 Stage 4

Figure 2.1: General procedure of constraint preserving error bounded lossy compression:
Constraint (A) is handled before the prediction step; constraint (B) is handled primarily in
both the prediction and quantization stage by replacing data points with Lorenzo-predicted
values; constraints (C), (D), and (E) are addressed by designing a new quantization method.

2.1.1 SZ Compression Model

Our floating-point tensor compression methods use the prediction-based error-bounded com-

pression framework similar to SZ, SZ3. Therefore, we give a more detailed introduction of

this framework, which is illustrated in Figure 2.1. As shown in the figure, the compression

model is made up of four key stages: prediction, quantization, Huffman encoding, and loss-

less compression. Given a set of raw data, SZ scans the whole dataset (pointwise [21, 87] or

blockwise [54]) to predict the data values. In a 1D dataset, the prediction method is simply

a first-order Lorenzo predictor [87], which uses only the preceding value to approximate the

current data point. In a 2D or 3D dataset, SZ adopts a hybrid data prediction method com-

bining the first-order Lorenzo predictor (using three nearby values in the 2D Lorenzo and 7
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nearby values in the 3D Lorenzo) and a linear regression-based predictor [54]. Such a hybrid

predictor can significantly improve the accuracy of data prediction, which in turn can sub-

stantially increase the compression ratio, especially when the error bound is relatively large.

SZ3 proposes a newer interpolation-based predictor[104] that reaches a higher compression

ratio for most datasets. The second stage uses a linear quantization method to convert the

distance between the predicted value and the original value to an integer number (called the

quantization code or quantization number) for each data point. A custom Huffman encoder

is then applied to compress the integer quantization codes, followed by a lossless dictionary

coding (using Zstd [110] by default in SZ3).

2.1.2 Prediction Algorithms

Lorenzo Prediction

The easiest prediction method is called Lorenzo prediction. According to Tao et al.[87], the

value of (i0, j0) on the prediction surface can be expressed by the linear combination of the

data values in the neighborhood, as shown in Figure 2.2. Because Tao et al.[87]’s evaluation

results show that the first- and second-layer prediction yield the best results in most datasets,

we only give the formula for the first two layers here.

Let V (i, j) be a function that returns the recontructed data of point (i, j). Let f(i, j) be

the prediction function for point (i, j). For the 1-layer lorenzo prediction, the formulae is

f1(i, j) = V (i, j − 1) + V (i− 1, j)− V (i− 1, j − 1) (2.1)

And for the 2-layer lorenzo prediction, the prediction formulae is

f2(i, j) =2V (i− 1, j) + 2V (i, j − 1)− 4V (i− 1, j − 1)− V (i− 2, j)− V (i, j − 2)+

2V (i− 2, j − 1) + 2V (i− 1, j − 2)− V (i− 2, j − 2)

(2.2)
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Figure 2.2: (Figure extracted from [87]) Example of Lorenzo Prediction in two-dimentional
data: the point to be predicted can be predicted by its surrounding data points.

Note that V does not return the original data but the reconstructed data, meaning the

prediction of previous data points will affect the prediction result for the succeeding points.

Linear Regression

Zhao et al.[104] proposed a linear regression method to predict data points, as illustrated

in Figure 2.3. During compression, each data block is approximated by a linear hyperplane

with four coefficients (f(x, y, z)=β1x + β2y + β3z + β0), and thus only four coefficient

values need be stored to substitute all the data in that block. During the decompression,

each data block would be recovered by the hyperplane reconstructed with the four regression

coefficients. Without loss of generality, suppose the data block size is n3×n2×n1, then its

regression coefficients can be calculated as the following formula (dijk refers to the data

values in the data block at the location {i,j,k}).
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β1 = 6
n1n2n3(n1+1)

( 2Vx
n1−1 − V0)

β2 = 6
n1n2n3(n2+1)

(
2Vy
n2−1 − V0)

β3 = 6
n1n2n3(n3+1)

( 2Vz
n3−1 − V0)

β0 = V0
n1n2n3

− (n1−12 β1 +
n2−1
2 β2 +

n3−1
2 β3)

(2.3)

where V0 =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

dijk, Vx =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

i ∗ dijk,

Vy =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

j ∗ dijk, Vz =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

k ∗ dijk.

f(x,y)=β0 +β1 x + β2 y

x
y

Figure 2.3: (Figure extracted from [104]) Illustration of linear regression model

In this compression method, the compression ratio can be estimated based on the follow-

ing formula. For instance, when the block size is 4×4×4, the compression ratio is 64/4=16;

when the block size is 3×3×3, the compression ratio is 27/4=6.75.

CR =
n3n2n1

4
(2.4)
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Interpolation

Zhao et al.[104] also proposed a lightweight cubic interpolation-based prediction method for

each unknown data point by only using its four surrounding data values. This method is

claimed to outperform previous methods in terms of compression ratio (the prediction is

more accurate) but have higher computational cost. The authors reduced the computational

costs by precomputing a closed-form interpolation formula based on four specific neighbor

data points (using the data points i − 3, i − 1, i + 1 and i + 3 to predict data point i as

shown in Figure 2.4). There are two spline methods to do the prediction: (1) Linear spline;

(2) Cubic spline. The closed form formula are equation 2.5 and 2.6 respectively.

pi =
1

2
di−1 +

1

2
di+1 (2.5)

pi = −
1

16
di−3 +

9

16
di−1 +

9

16
di+1 −

1

16
di+3 (2.6)

Figure 2.4: (Figure extracted from [104]) Illustration of cubic spline interpolation

To predict data points in the entire dataset, the interpolation method follows a level

order pattern. Suppose that the dataset has n elements in one dimension. The number of

levels required to cover all elements in this dimension is l = 1+ ceil(log2 n). In the example

shown in Figure 2.5, at level 0, the algorithm uses 0 to predict d1; at level 1, it uses d1 to

predict d9. For now d9 and d1 are not necessarily 0 because there are quantizations to drag
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the predicted data back to an error-bounded range. After recursively doing the interpolation

through each level, all data points would be predicted properly.

Figure 2.5: (Figure extracted from [104]) Illustration of multilevel linear spline interpolation

Such a multilevel interpolation can be applied on a multidimensional dataset. The idea is

that, for each level, the interpolation will be performed along every dimension. The details

are presented in [105]’s work and will be omitted here.

2.1.3 Quantization Algorithms

Prior work has used an integer quantizer with a constant error bound. This thesis focuses

on quantization algorithms to improve compression performance. The following text briefly

describes the prior error-controlled quantization [87].

The design of the quantization stage is shown in Figure 2.6. The first step is to use a

prediction method to obtain a predicted value p. Often called p the “predicted value in the

first phase” [87]. Then 2m − 2 values are expanded from the predicted value in the first

phase by stacking the error bound linearly. And they are called the “second-phase predicted

values”. The quantization process is to add a certain integer (can be negative) times of double

error bounds to p and make the predicted second-phase value within the error bound from

the original value. Therefore, even if the prediction is not that accurate, the quantization
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can always pull the value back to the original data, unless it is totally unpredictable.

Figure 2.6: (Figure extracted from [87]) Illustration of the basic quantization algorithm

2.1.4 Encoding Algorithms

Two encoding algorithms are added in the SZ compression framework: (1) Huffman Encoding[40];

(2) Run-length Encoding[79]. As they are classic algorithms, the following text presents only

a brief introduction.

Huffman Encoding is an Entropy-based lossless compression scheme which assigns each
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symbol in the data stream a unique prefix-free code. SZ uses this encoding to compress the

quantization bins. Because the prediction is supposed to be relatively precise, there would

be a large number of 0 (or values near 0) in the quantization bins. The Huffman Encoding

can significantly reduce the quantization bins’ size in SZ.

Run-length encoding reduces size by eliminating the space taken by many repeating

values. An illustrative example is to encode ‘111110000222222’, the run-length encoding will

be ‘5[1]4[0]6[2]’, which records the number of repeating times for each consecutive pattern.

2.1.5 Lossless Compression Algorithms

Common lossless compressors include Gzip[33], LZ4[6], FPC[11], Fpzip[60]. Gzip[33] is a

generic compression tool that can compress any type of data stream, such as video and

graph files. It integrates LZ4 and Huffman encoding to perform compression. The LZ4

algorithm[6] makes use of a sliding window to find the same repeated sequences of the data

and replace them with references to only one single copy existing earlier in the data stream.

FPC[11] is a lossless floating-point data array compressor, which analyzes the IEEE 753

binary representations and leverages the finite context model. Fpzip[60] was proposed to

compress HPC data by focusing particularly on floating-point data compression. Fpzip can

obtain a higher compression ratio due to its more elaborate analysis of HPC floating data,

such as predictive coding of floating-point data.

In the SZ compression framework, ZSTD[110] is used by default in the lossless compres-

sion stage due to its performance evaluated in [87][21]. As the focus of this thesis is not on

the lossless compression, ZSTD is used to fairly compare with previous SZ versions.

2.2 Addressing Diverse User Demands

Existing error-bounded lossy compressors offer different types of error bounds to address

diverse user demands. The most common error-bounding approach involves using an absolute
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error bound, which ensures that the pointwise difference between the original raw data and

reconstructed data is confined within a constant threshold. Many compressors such as SZ,

ZFP, and MGARD support absolute error bounds. Other error-bound approaches have been

explored to adapt to diverse user requirements. For example, SZ supports pointwise relative

error bounds [101]; and Digit Rounding [20], Bit Grooming [100], ZFP, and FPZIP support

a precision mode that allows users to specify the number of bits to be truncated in the end

of the mantissa, in order to control the data distortion at different levels.

To satisfy user demands on a specific quality of interest, researchers have recently stud-

ied how to respect various metrics. For instance, Tao et al. [85] developed a formula that

can link the target peak signal-to-noise ratio (PSNR) metric to an absolute error bound

setting in SZ such that the data can be compressed based on a user-specified PSNR metric.

MGARD supports various norm error metrics and linear quantities of interest in its multigrid

compression method. However, no existing error-bounded lossy compressor allows users to

set particular prerequisites (or constraints/conditions) in error-bounded compression. How-

ever, users often have diverse precision demands for various data value intervals or specific

requirements on different spatial regions, which are determined by their sophisticated post

hoc analysis purposes and quantities or features of interest.

2.3 Compression Performance Prediction

Knowing the expected compression ratio, quality, and time in advance can be very beneficial

for scientific workflows. Many previous works tried either white-box or black-box methods

to predict compression performance.

White-box methods usually do part of the compression and collect data from the com-

pressor to predict the final compression performance. For example, Tao [89] developed a

white-box method that samples data, estimates the probability density function of the data

in the blocks and computes the entropy of the quantize values to derive a metric for com-
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pressibility. Jin’s method[44] collects the distribution of quantization bins and uses a fixed

formula with two tunable parameters to calculate the predicted compression ratio for SZ3.

The existing white-box methods can be efficient but cannot fit to all datasets and variations

of the compressors.

The black-box methods use data-centric features and predictors that are not derived

from the internal mechanism of certain compressors. For example, [77] extracts compressor-

agnostic data features to determine the corresponding error bound for a target compression

ratio. [28] and [90] compute statistical features derived from data including spatial diversity,

spatial correlation, general distortion measurement, etc. to model the ease of compression

on each dataset. Then they used the calculated features with a regression model to fit each

compressor. The problem is that their selected features are quite expensive to compute.

These methods are good in offline use cases but can be too heavy for optimizing the overall

transfer time with compression. Therefore, we propose a method that combines compressor-

related features, data-related features, and compressor configuration features for a fast and

relatively accurate compression performance prediction for the SZ3 series of compressors.

2.4 Reference-based Sequence Compression

Raw sequencing data are typically stored in FASTQ format [18]. A FASTQ file consists

of a separate entry for each short sequence, consisting of four lines: an identifier string, a

nucleotide sequence (the read), the character ’+’, and quality scores. The identifier string

contains information about the sequencing technology and other metadata obtained from

the sequencing machine, which uniquely describes a read. The nucleotide sequence is a

string of A, C, G, T, and N characters that represent the bases (base-pairs) of the DNA

sequence. There are some other characters for storing protein sequences that do not exist in

our datasets. Quality scores record the confidence of each base generated by the sequencing

machine. Due to their higher entropy and larger alphabets, quality scores have proven to be
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more difficult to compress than reads [36].
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Figure 2.7: Reference-based sequence matching process: (1) use seeds to build an index
for the reference sequence; (2) find matching locations for reads on the reference sequence;
(3) for unmatched bases, store the difference. Our algorithm performs better matching by
storing more seeds for a higher chance of matching, and local search for insertion and deletion
detection.

To reduce the space required to store FASTQ files, researchers focus on compression of

reads and quality scores, which consume most of the space and carry the most relevant in-

formation [36]. Traditional general-purpose compression algorithms such as gzip [33], and

bzip2 [30] fail to obtain a high compression ratio for sequencing data. Thus, many special-

ized FASTQ compressors[17, 47, 96, 48] have been proposed. The most successful of these

algorithms are so-called reference methods, which exploit the fact that more than 99% of

human genomes are identical [42] to reduce greatly the storage space required.

Existing FASTQ sequence compression algorithms can be categorized into two classes:

reference-based and reference-free algorithms. Reference-based algorithms map the nucleotide

sequences in a FASTQ file to a reference genome and use the mapped positions to encode

the sequences, as shown in Figure 2.7. Examples include LW-FQZip[102], LW-FQZip2[39],

GTZ[95], and genozip[48]. Reference-free algorithms are used when a reference genome is

not available. For example, Leon[7] and Quip[45] use assembly-based algorithms. Generally,

reference-based compressors perform better in terms of both compression time and ratio than

reference-free compressors, and thus we focus on developing a reference-based algorithm for
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FASTQ compression.

2.5 Remote Task Orchestration

The cloud-based Function-as-a-Service (FaaS) paradigm supports transparent remote func-

tion execution and data staging. Researchers have shown the efficiency and scalability bene-

fits of deploying applications as sets of functions that execute in response to events [5]. The

FaaS paradigm has been extended as a general model for remote computing across federated

resources. AWS Lambda is one widely adopted, serverless, event-driven platform that allows

businesses to reduce infrastructure costs. It aims to run code without thinking about servers

or clusters. However, in our scenario, users need to run compression on specific sites instead

of letting Amazon choose a computation server. Globus Compute [14] is another platform

that uses FaaS as an interface for remote function execution across federated computing

infrastructure. In the Globus Compute model, users can deploy endpoints on arbitrary com-

puters. These endpoints are registered with the cloud-hosted Globus Compute platform

and may then be used to execute functions. The cloud platform manages the secure and

reliable execution of these functions on the selected endpoints. This model suits our remote

compression tasks very well.

Data transfer is essential in modern scientific computing. Globus Transfer is a widely

used research data management platform that enables high-performance, secure, and reliable

third-party data transfers. Globus Transfer builds on the GridFTP protocol for data move-

ment and adopts several optimization techniques such as parallel streams [35, 98], which

can significantly improve data transfer performance. Transferring big data files with Globus

Transfer, however, may still be time-consuming due to limited network paths and underpro-

visioned data transfer nodes (DTNs). We aim to improve data transfer performance with

GlobaZip by applying dynamic compression methods.
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CHAPTER 3

METHODOLOGY

3.1 Preserving Diverse Data Constraints

Based on the mechanism of prediction-based compression algorithm SZ3, I identified five

different data constraints that need to be handled properly. We need to modify one or

more stages in both compression and decompression to ensure the data constraints are met.

To clarify the meaning of terminologies including “data constraints”, “compression”, “data

quality”, I present a formalized description in the following section 3.1.1.

3.1.1 Formalization

Given a scientific dataset D composed of N floating-point values (either single precision or

double precision), the objective is to develop an error-bounded lossy compressor that can

respect a set of user-defined constraints such as preserving global value range or preserving

multiple error bounds based on value intervals or different regions in the dataset.

Three assessment metrics are considered. The first two are compression speed sc and

decompression speed sd. They are usually measured in megabytes per second: in other words,

the size (in MB) of the original dataset processed (either compressed or decompressed) per

time unit. The third metric is compression ratio (denoted by ρ), which is defined as follows:

ρ =
N ·sizeof(dataType)

Sizecompression
, (3.1)

where dataType can be either float or double and Sizecompression is the total size after

compression.
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Table 3.1: Examples of user-required constraints applied to scientific simulation datasets
No. User-Required Constraints Examples Science Domains
(A) Isolating irrelevant value Hurricane Isabel [41], Katrina [3] Climate, Weather, etc.
(B) Preserving global value range CESM [46] Climate, etc.
(C) Preserving value-interval-based error bounds Katrina [3], NYX Weather, Cosmology, etc.
(D) Preserving multiregion-based error bounds CESM [46] Weather, Seismic imaging, etc.
(E) Preserving irregularly shaped regions QMCPACK, Miranda, CESM [46] Hydrodynamics, Weather, etc.

Our goal then can be formulated as Formula (3.2).

Maximize ρ

subject to user-required constraint
(3.2)

The user-required constraint refers to additional requirements applied to the lossy com-

pression beyond the traditional error-bounding constraint. We formulate the five constraints

listed in Table 3.1 as follows:

constraint (A): Preserve and isolate di /∈ [Rmin, Rmax] (3.3)

constraint (B): Preserve

 max(d̂i) = high(r(D))

min(d̂i) = low(r(D))
(3.4)

constraint (C): |di − d̂i| ≤ e(di) (3.5)

constraint (D, E): |di − d̂i| ≤ e(LOC(di)), (3.6)

where di∈D denotes the ith data point in the original dataset D, d̂i is its corresponding

decompressed value, low(r(D)) and high(r(D)) are the boundaries of the dataset D’s value

range r(D), e(di) denotes the user-required error bound in terms of data point di’s value

(i.e., user-specified error bound in terms of the value interval that covers di), LOC(di) refers

to the spatial location of the data point di, and e(LOC(di)) denotes the user-specified error

bound for the specific region covering LOC(di). Constraints D and E have identical formulas:

the key difference is that E allows irregular shapes, whereas D focuses on a regular shape
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defined by a rectangular box or cube. We summarize all the notation in Table 3.2.

Table 3.2: List of Symbols
Notation Description
di original data value at position i
pi predicted value of di
d̂i reconstructed data value after decompression
r(x) value interval of data point x (di)
e(x) specified error bound based on a value interval (x=r(di))
e(LOC(x)) specified error bound based on the location (x = di)
l(x) length of some value range (x = r(di))
low(r(x)) lower boundary of value interval r(x)
high(r(x)) higher boundary of value interval r(x)
q quantization index (i.e., quantization code)
qs shifted quantization number

We give an example to further illustrate how the research problem is formulated in our

work. As described above, researchers using the Hurricane Katrina dataset to track the

path of the hurricane are concerned only with water surface values above 1m. Based on

Formula (3.2) and Formula (3.5), the target is to maximize the compression ratio while

ensuring that the relatively higher values have lower error bound (e.g., if di ≥ 1, then

e(di) = 0.01; otherwise, e(di)=0.1). Another example is the Nyx cosmological simulation

with a specific quantity of interest, namely, dark matter halo information. According to

the Nyx analysis code [74], the dark matter halo cells are computed based on a threshold

located in the interval of [80,85], which means that for any data point di in [80,85], their

error bounds e(di) should be lower than e(dj), where dj refers to the data points that fall

outside of the critical interval [80,85]. Such a multi-interval-based error bound setting can

eliminate the distortion of halo cells calculated by the reconstructed data with the same

compression ratios.

3.1.2 Isolating the irrelevant data

Certain values in the dataset may have special meaning which are outside a normal range.

For example, in the Katrina dataset, there is a portion of data points with value -99999
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representing the contour boundaries that are not in the range of normal data points. They

can significantly lower the rate of valid prediction using neighbouring data points and thus

lower the overall compression ratio of prediction-based compression algorithms. We can de-

sign a preprocessing step in the compression algorithm for these datasets to smoothen the so

called “irrelevant data” but record the positions and reconstruct it during the decompression

process.

In order to handle the irrelevant values correctly and efficiently, the first three stages

in SZ (i.e., prediction, quantization, and Huffman encoding) all need to be modified. The

details are as follows.

In stage 1 (data prediction), the key problem is to fill the missing values for the irrelevant

data points such that the smoothness of the data will not be destroyed by irrelevant values.

This strategy can maintain a high prediction accuracy at each data point throughout the

whole dataset. To this end, we use the Lorenzo predicted values [57] to replace irrelevant

values. More specifically, for a 1D dataset, the irrelevant data will be replaced by the values of

their preceding data points (di ← di−1); for a 2D dataset, di,j ← di,j−1 + di−1,j − di−1,j−1;

and for a 3D dataset, di,j,k ← di−1,j,k + di,j−1,k + di,j,k−1 − di−1,j−1,k − di−1,j,k−1 −

di,j−1,k−1 + di−1,j−1,k−1. Figure 3.1 illustrates how irrelevant values are modified in the

prediction stage for a 2D dataset. As shown in the figure, the irrelevant value is 1E35. When

encountering an irrelevant data point during compression, the values will be estimated based

on the Lorenzo predictor: for example, 1.29 ← 1.25+1.27−1.23; 1.33 ← 1.31+1.29−1.27).

1.23 1.25

1.27
1E35

1E35

1.29

1.331.31
1E35

Normal data points

Normal data points 

used to fix the 

missing data points

Irrelevant data 

points

Figure 3.1: Illustration of how irrelevant data values are cleared in a 2D dataset.
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After modifying the “irrelevant” data points, we propose two strategies to preserve the

irrelevant values during the second stage of the compression pipeline.

• Strategy A: Since the irrelevant value is often a single floating-point number (such

as 1E35), we use a 1-bit array to mark whether this is an irrelevant value for each data

point (1 indicates irrelevant value, and 0 indicates normal data).

• Strategy B: Use one quantization bin (such as bin #1) from the quantization range

to mark whether the data point is an irrelevant value. Thus, there are three types

of quantization bins in this case: (1) quantization bin #0 records the unpredicted

data value as usual [57], (2) quantization bin #1 marks the irrelevant data, and (3)

the remaining quantization bins are used to record the distance between the predicted

value and original value.

Each of the two strategies has its own advantages and disadvantages. Strategy A has no

impact on the distribution of quantization codes, so it can maintain high Huffman-encoding

efficiency on the quantization codes; but it suffers from an overhead of storing the extra

bit array. Strategy B does not have such an overhead; but it may affect the distribution

of quantization codes to a certain extent, which will inevitably lower the effectiveness of

compressing the quantization codes by Huffman encoder.

In the third stage (Huffman encoding), if the solution adopts strategy A, we compress the

1-bit array using Huffman encoding. This compression may significantly lower the overhead

because irrelevant data points are generally a small portion of the whole dataset and therefore

the 1-bit array is composed mainly of 0s.

3.1.3 Preserving the global value range

Scientific data have important physical constraints regardless of the precision of the data.

For instance, water’s temperature at the standard atomosphere pressure should be within
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the range of 0◦C to 100◦C. If after the compression, certain data points are reconstructed

to be outside the boundary, they need to be found and further modified even if their values

are within the error bound.

The simplest, yet suitably efficient, strategy for preserving the global value range is to

include the original value range information as metadata in the compressed data. During

decompression, when a reconstructed data value outside the “original value range” is found,

the algorithm will replace it with either the minimum value or maximum value of the value

range. This strategy introduces little computation overhead in the compression stage because

we need only to scan the dataset to find the maximum and minimum values, a process we

refer to as “preprocessing” in our evaluation. During decompression, a small computation

overhead (generally ∼10% in our experiments) may be introduced by this strategy, because

the algorithm needs to check each data point to determine whether the reconstructed value

falls outside of the original dataset’s value range. If so, it would be substituted by either the

maximum or minimum value.

3.1.4 Preserving value-interval-based error bounds

Different value-intervals may require different precisions. The existing lossy compression

methods usually can only set a global error bound for all data, leading to inefficient com-

pression when the error bound is set too low or inacurate values for important intervals when

the error bound is set too large. I design an algorithm that allows different value intervals to

have different error bound while still maintaining the integrity of the compression/decom-

pression pair.

As illustrated in Figure 3.2, the proposed multi-interval quantization method calculates

the total number of quantization bin indices based on the varied-length quantization bins,

followed by other compression techniques including Huffman encoding and dictionary encod-

ing (Zstd). Algorithm 1 presents the pseudocode of the multi-interval quantization in the

27



compression stage.
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Figure 3.2: Multi-interval error bound model. This example shows a few exaggerated error
bounds in each range for simplicity of description: each rectangle represents twice the error
bound in that range, and the ranges are tightly connected. The error bound will usually be
smaller in practice, and each range may contain hundreds or thousands of error bounds.

For each data point, we must deal with three relationships between the original raw

value di and its predicted value pi: (1) r(di) = r(pi): they fall in the same interval; (2)

r(di) < r(pi): the predicted data are in some range ahead of the original data; and (3)

r(di) > r(pi): the predicted data are in some range before the original data.

Situation 1 (lines 5∼6): If the original raw value di and the predicted value pi fall in

the same interval (i.e., r(di) = r(pi)), the quantization problem falls back to the traditional

linear-scale quantization [57]. Specifically, we can use the following formulas to compute the

logic quantization code and decompressed data.

q = round( di−pi
2e(r(di))

) (3.7)

d̂i = pi + 2e(r(di)) · q (3.8)

We use an example to illustrate how the linear-scale quantization works. Suppose the error
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Algorithm 1: Multi-interval Quantization in Compression Stage
Input: user-specified intervals and error bounds ε
Output: compressed data stream in form of bytes

1: for each data point di do
2: Use the composed prediction that combines Lorenzo predictor and linear regression predictor to

obtain a prediction value pi.
3: Ip ← r(pi). /*Obtain interval index of pi*/
4: Id ← r(di). /*Obtain interval index of di*/
5: if Id == Ip then

6: q←round( (di−pi)
2e(Id)

)./*Quantized distance between di & pi.*/

7: else if Id > Ip then

8: t =
∑Id−1

i=Ip+1
l(i)
2e(i) . /*Count bins for middle intervals.*/

9: tp = round(
high(Ip)−pi

2e(Ip)
). /*Get quantized distance for Ip.*/

10: td = round(di−low(Id)
2e(Id)

). /*Get quantized distance for Id.*/

11: q = t+ tp + td. /*Get the logic quantization code.*/
12: else
13: t =

∑Ip−1
i=Id+1

l(i)
2e(i) . /*Count bins for middle intervals.*/

14: tp = round(high(Id)−d
2e(Id)

). /*Get quantized distance for Id.*/

15: td = round(
pi−low(Ip)

2e(Ip)
). /*Get quantized distance for Ip.*/

16: q = t+ tp + td. /*Get the logic quantization code.*/
17: end if
18: qs ← q + R. /*Shift quantization code.*/
19: end for
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bound (i.e., e(r(di))) is 20 and we have di=−74, pi=−95. Then di − pi = 21 and q =

round(21/40) = 1. The decompressed value d̂i is −75, whose distance to the raw value is

less than the error bound.

Situations 2 and 3 (lines 7∼17): These correspond to the situation where the raw

value di and its predicted value pi fall in different value intervals (i.e., r(di) ̸= r(pi)). In the

following text, we describe the situation with r(di) > r(pi) (i.e., lines 7∼11 shown in the

algorithm); the other situation is similar.

The fundamental idea in handling this situation is to adjust the quantization policy

to use various bin lengths or sizes in different value intervals. Specifically, we count the

quantized distance (i.e., the number of quantization bins) from the predicted value to the

original raw value. Whenever the counter crosses a different interval, we continue to add the

quantization bins from the boundary of the new interval. As illustrated in Figure 3.2, suppose

the predicted value is located at -10 and the original value is 100. Then the calculation of the

quantization bins involves all the value intervals, and the quantization code is 1+7+4+1=13.

The decompressed data would be (38+238)/2=138. Obviously, the decompressed data value

is determined mainly by the last value interval and its quantization bin size. The formula

for reconstructing the decompressed value is given below (we assume the raw data valuw is

greater than the predicted value, without loss of generality):

qt = round(
di−low(r(di))−e(r(di))

2e(r(di))
) (3.9)

d̂i = low(r(di)) + e(r(di)) + 2e(r(di)) · qt. (3.10)

Now we describe the decompression in Algorithm 2. The algorithm proceeds by executing

similar operations to the compression process but in reverse order to obtain the decompressed

data from a predicted data value and the corresponding quantization bins. As shown in the

pseudocode, we first calculate the number of quantization bins for each value interval (line
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3∼5). We then decompress each data point based on the multi-interval quantization (lines

6∼34). If the raw data value is lower than the predicted value (i.e., qj < 0), the code will

scan all the involved value ranges downward (lines 10∼29). Lines 25∼29 refer to the situation

where the predicted value and original raw data value fall in the same interval. Lines 13∼23

deal with the other situation where the two data values fall in different intervals.

Note that we need to deal with the edge situation carefully. For instance, when the

original data are near the high or low bound of an interval, the quantization value in this

final interval might be equal to quantRange[i], causing the decompressed value to be in the

next interval unexpectedly. In this case we shift the quantization by 1 in the compression

stage to ensure that the decompressed data and original data are in the same interval.

3.1.5 Preserving multiregion-based error bounds

The positions of data points in some datasets have geolocation meanings and thus different

regions may require different precisions for certain applications. Figure 3.3 illustrates our

approach enabling users to mark interesting regions that we then use to apply a tighter

error bound on each region according to the requirement and preknowledge of the data

distribution.

To reduce the overhead in (de)compression time, we do not assign a region to each data

point; instead, we consider each intrablock of data in the same region. To make the algorithm

simpler, we adopt the intrablock of size 6×6×6 for 3D data, which is consistent with SZ’s

linear regression prediction block size [54]. The undesired side-effect of this method is that

the user-customized region (a regular box) may cut through some intrablocks. Since the

data have to be compressed/decompressed in the unit of blocks (e.g., 6×6×6 for 3D data),

some storage overhead occurs at the edge of the customized region. We consider this storage

overhead acceptable because the region of interest is relatively large in practice (at a scale

of several thousands) while the block size is far smaller (such as 6×6×6). Keep in mind that
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Algorithm 2: Multi-interval Quantization in Decompression
Input: compressed data stream
Output: decompressed data stream in the form of bytes

1: Read value intervals and error bounds in the header and initialize multi-interval quantizer.
2: Read the quantization bins and unpredictable data.
3: for each interval index Ii do
4: l̂i =

l(Ii)
2e(Ii)

. /*Calculate # quantization bins for each interval*/

5: end for
6: for each decompressed data position j do
7: Use the composed prediction that combines Lorenzo predictor and linear regression predictor to

obtain a prediction value pj .
8: qj = qs − R. /*Get the logic quantization code qj*/.
9: Ip ← r(pj). /*Obtain range index of pj*/
10: if qj < 0 then
11: ∆← pj − low(Ip) /*Compute pj ’s distance to the low boundary*/

12: ∆̂← round(∆/2(e(Ip))) /*Compute quantized distance*/

13: if qj + ∆̂ < 0 then
14: for i from Ip − 1 to 1 do

15: if qj + l̂i ≥ 0 then

16: d̂j←high(i)−e(i)+(qj+1)·(2·e(i)). /*Get decompressed data*/

17: if d̂j < low(i) then

18: d̂j ← low(i) + e(i). /*Correct decompressed data*/
19: end if
20: else
21: qj ← qj + l̂i. /*Add quantization length for further search*/
22: end if
23: end for
24: else
25: d̂j ← pj + qj · 2 · (e(Ip)). /*Compute decompressed value*/

26: if d̂j < low(Ip) then

27: d̂j ← low(Ip) + e(Ip). /*Perform correction to avoid undesired boundary-crossing*/
28: end if
29: end if
30: else if qj == 0 then

31: d̂j ← pj . /*The prediction is accurate, directly use the predicted value*/
32: else if qj > 0 then
33: Calculate the decompressed data using similar methods. /*For brevity we do not include details

here. It is similar to the case when qj < 0, with just a few changes to the low and high bounds
and some calculation differences.*/

34: end if
35: end for
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Figure 3.3: Constraint(D) region selection for 1D, 2D, and 3D data: In 3D cases, each region
can be specified with seven parameters: the starting positions (3 parameters), the length of
each direction (3 parameters), and the error bound (1 parameter).
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the purpose of proposing this region-based algorithm is to reduce the compressed data size

while preserving precision for post hoc analysis.

The whole process can be done in the quantization stage if the predictor is fixed, since the

varied error bounds will take effect only when calculating the quantization code. However,

when we compose the linear regression predictor and Lorenzo predictor together, the data

sampling process will need a correct error bound to select an optimal predictor for the current

block. The varying error bounds can cause the predictor selection to yield a bad result. This

challenge exists in all kinds of blockwise compression where predictors may change according

to the error bound for each block.

3.1.6 Preserve irregular regions with a bitmap

To satisfy complex, customized regions of error bounds (rather than just rectangles or cubes),

we introduce a bitmap error bound array (as shown in Figure 3.4). It contains a set of

integer values that indicate different data distortion levels, each of which corresponds to a

specific error bound value. Such a method allows users to specify an error bound for each

data point. However, it is not realistic to manually assign each data point an error bound,

since there are usually millions of data points. Instead, users can use third-party software

to mark a customized shape in a picture or apply computer vision techniques to obtain

contours that distinguish regions (e.g., land and ocean). Such a customized-marking option

is more accurate and flexible in practice especially in geolocation-related research (to be

demonstrated later).

Although using bitmaps supports the most complex error bound settings—allowing each

data point to have its own error bounds—cases rarely require many different error bounds

to coexist in one dataset in practice. Most requirements are limited to a few different error

bounds in total, because of coherence of data in space; for example, “higher precision may be

required near the hurricane center” or “land areas need higher precisions than ocean areas.”
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Therefore, we use one byte to represent all different types of error bounds. That is, we use a

byte array to store the index of error bound for each data point and apply Huffman coding

and lossless compression to compress the bitmap array if needed. In the extreme case, the

original single error bound would be equivalent to an all-zero bitmap, which would bring

almost zero overhead after proper compression. The overhead of using a bitmap array will

be presented in Section 4.6.
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Figure 3.4: Illustration of bitmap error bound setting: Use an index to represent the error
bound for each data point, and use a separate array to store all possible error bounds.

The bitmap solution solves a complicated error bound requirement (actually, all possible

error bound requirements) and presents an opportunity for automated error bound selection,

which may relieve scientists of having to configure advanced bitmap generation algorithms.

This solution can also have additional global advantages compared with the region-based

method when different error bounds are distributed evenly across the dataset. By setting

a fixed proportion of data points with some certain error bounds, we can achieve higher

compression ratio, lower root mean squared error, and comparable visual quality.
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3.2 Compression Performance Preview

To ensure confidence in the quality and speed of data compression, we need a mechanism to

visualize at least part of the decompressed data to verify that the distortion remains within

an acceptable range. Additionally, we require an estimate of the compression performance

in advance to confirm that the compressed size is within an acceptable range and that the

compression speed meets the application’s requirements.

3.2.1 Data Quality Preview

The data preview mechanism provides users with both a visualization and a histogram of

data value distribution ahead of the compression of full dataset: see Figure 3.5 (C) and

(D). Users can decide which value range to focus on by looking at the value distribution,

and determine which regions to focus on by selecting rectangular regions on the visualized

image. Setting the error bound in this way enables user to pay more attentions on data

characteristics. For an extremely large file, users can select a layer to preview as shown

in Figure 3.6, which helps guide their region/range-based compression configuration. This

preview does not involve compression and only transfers an image from the remote machine

to the local machine. The compute and data transfer overhead is very low, and thus the

preview is very responsive. Users can easily select a few layers from different parts of the

data to have a good understanding of the data characteristics.

3.2.2 Feature-based Performance Prediction

In general, it is impossible for users to predict compression quality (such as compression ratio

and data distortion level) for a particular error-bounded lossy compressor without performing

the compression on the given dataset. This is because the effect of data prediction/transform

and coding in the compressor varies with diverse data features. However, certain compression
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Figure 3.5: CESM CLDMED multi-range compression distortion

performance characteristics can be predicted with features extracted from the first few stages

of the compression. I propose a prediction model to estimate the lossy compression ratio,

compression speed, and peak-to-noise ratio (PSNR). With this prediction model, users can

quickly test multiple compression settings and choose the one that best matches their use

case.

We train a machine learning (ML) model on masses of sample datasets, with the aim to

build a relationship between the compression-related features and the compression quality.

The model can then be used to estimate compression quality accurately based on the features

extracted from the given datasets at runtime.

We derive many features as input to our model, as illustrated in Figure 3.7. Identifying

a set of useful features is challenging, because (1) the extraction of each feature should

have low computation cost, and (2) the features should form an accurate indicator of the

compression quality. We consider features in one of three categories: (1) config-level features,

(2) data-based features, and (3) compressor-level features.
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Figure 3.6: The UI to preview one layer of the data in a large file. It also allows users to
visually select different regions and ranges for compression settings.

Config-based features are configuration settings (including error bound values and

compression pipeline) specified by users. Different error bounds can yield largely different

compression quality (e.g., compression ratios and compression speed). Compression qual-

ity also depends on specific compressors each with distinct designs. The prediction-based

compressors[53, 57], for example, may adopt various predictors which may exhibit differ-

ent performances. We enable our model to recognize the characteristics of compressors by

treating the compressor-type feature as a discrete classification variable and feeding it with

profiling data.
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Figure 3.7: The features used to predict compression quality are categorized into three types:
config-based, compressor-based, and data-based features, which are shown as colored boxes.

Data-based features describe the characteristics of datasets, which is also a key factor

to distinguish the compressibility. As shown in Table 3.3, even for the same application,

different datasets can have very different properties such as min, max, and value range. In

addition, we also use byte-level information entropy as one feature, because it reflects the

“chaos-level” of a dataset. The entropy is defined as

H(X) = −
∑

x∈S
p(x) log p(x) = E[− log p(X)]

where S is the set of byte values (0-255) and p denotes the probability/frequency of an

element in S. In general, the higher entropy a dataset exhibits, the more difficult it is to

compress that dataset. As verified in Figure 3.8 (a) and (b), the entropy value projects a

positive correlation against the compression time, especially when the error bound is rela-

tively low. It is worth noting that when the error bound is relatively high, the entropy would

lose its effect (as shown in Figure 3.8 (c)), because the large error bound would diminish

the data variation. Moreover, we use the average Lorenzo error (i.e., the difference between
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the true data value and Lorenzo-predicted value[53]) as a feature to shape the “easiness of

prediction” for a dataset. If the average Lorenzo error is high, the prediction stage tend to

be imprecise, leading to low compression ratio.

Table 3.3: Examples of the basic data-based features in different datasets: CLDHGH,
FLDSC, PCONVT are three fields in the CESM[46] dataset. HACC-VX and HACC-VY
are two fields in the HACC[34] dataset.

Dataset CLDHGH FLDSC PCONVT HACC-VX HACC-XX
min 0.00 92.84 39025.27 -3846.21 0.00
max 0.92 418.24 103207.45 4031.25 256.00
value range 0.92 325.40 64182.18 7877.46 256.00

Figure 3.8: Data entropy vs compression time in Reverse Time Migration (RTM) [72] appli-
cation with three error bound settings

Compressor-based features are the properties of the intermediate data used in the

course of lossy compression, which generally have the highest prediction ability for compres-

sion quality. Specifically, we focus on the quantization bins, as shown in Figure 3.7. Since the

quantization bins are encoded by the subsequent lossless encoders, its characteristic closely

correlates to the final compression quality. In order to control the execution overhead, the

quantization bins are computed based on the sampled data points. As demonstrated in Fig-

ure 3.7, we develop four compressor-based features, including p0, P0, quantization entropy,

and run-length estimator. (1) p0 denotes the percentage of the 0-value bins over all quan-

tization bins. In general, large p0 tends to yield a high compression ratio and compression

speed, because a large majority of predictions should be accurate in this situation. (2) P0
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denotes the fraction of ‘0’(encoded) taken in Huffman coding in the regard of the full Huff-

man encoded data size. (3) Quantization entropy is the entropy of quantization bins. If the

prediction is accurate, quantization bin values will mostly be near 0, and the quantization

entropy will be low. (4) Run-length estimator (denoted Rrle) is derived from P0 and p0 by

the following equation: Rrle = 1/((1− p0)P0 + (1− P0)).

Figure 3.9: The relationship between p0, quantization entropy, run-length estimator and
compression ratio for Nyx application.

Figure 3.10: Run-length estimator alone fails to predict the compression ratio for Miranda
application while the three features together form a correlation to the compression ratio
which can be learned by a machine-learning model.

Although p0 and P0 are also used in related work [44], our solution is much more accurate

in compression quality estimation in general cases. The estimation of compression ratio in

[44] depends on the following formula: ĈR = 1/(C1(1 − p0)P0 + (1 − P0)), where C1 is an

ad-hoc tuning parameter which varies with different applications. As shown in Figure 3.9
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(c), almost all data points are located on the line y = x (red line in the figure), which means

the estimated compression ratio ĈR under that formula could be very accurate in this case.

This is due to the fact that this formula happens to form a linear function with compression

ratio for the Nyx[74] application. However, that formula is sensitive to the tuning of the

C1 parameter, which may cause unexpected large compression quality estimation errors in

other applications. For instance, the estimator’s value does not form a linear relationship

with the compression ratio for the Miranda[73] application (as shown in Figure 3.10 (a) and

(b)), which leads to bad compression quality estimation in turn (see Figure 3.10 (c)). In

comparison, our Rrle formula does not depend on the C1. In fact, Rrle serves as a feature

and we feed it into the ML model along with other features (including p0 and P0), and thus

the model can automatically fine-tune the coefficients applied on those features, thus being

able to keep an accurate estimation in most of cases (to be shown later).

Figure 3.11: CESM dataset — PSNR versus compressor-level features

Our compressor-based features can also be used to predict the reconstructed data distor-

tion. This is because these features are also closely correlated to the data distortion metrics

such as PSNR, as verified in Figure 3.11. Based on the observations above, we use a decision

tree model to perform the compression quality estimation.
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3.3 Genome Sequence Compression

Genome sequence data format is completely different from the aforementioned datasets, and

the traditional lossless compression or error bounded lossy compression methods do not

contribute much to the file size reduction. However, the biological fact of DNA sequence

similarity allows reference-based compression algorithms to significantly compress the files.

I propose a novel reference-based genome sequence compression algorithm for FASTQ files.

The contribution mainly lies in an improved sequence alignment approach, lossy quality

score compression, and GlobaZip’s remote orchestration capability for such compression.

3.3.1 Formalization

We provide a formal definition of our reference-based genome compression problem. A

FASTQ file contains information about a set of reads, Ri, each defined by three components:

a target sequence, a set of quality scores, and an identifier. In a raw FASTQ file, the target

sequence and quality scores each take equally around 49% of the storage space, while the

identifiers take the rest ∼ 2%. Each component can be compressed independently. The

target sequence has to be lossless, but the order can be relaxed. We use the reference-

based matching algorithm for the target sequence while using some traditional lossy/lossless

algorithms for the quality scores and the identifiers.

We denote N as the target sequence length, M as the reference sequence length, and K as

the compressed byte sequence length. For a single read Ri with target genome sequence XN ,

then given YM as the reference information, we define an encoder f(·, ·) by mapping XN

to a byte sequence BK with relationship BK = f(XN , YM ). One measure of a successful

compressor is that it yields a BK for which K < N . The decoder g(·, ·) should then recover

BK to XN with a function g(BK , YM ). Thus the encoder-decoder pair together recreate

the original sequence:
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XN = g(f(XN , YM ), YM ) (3.11)

We preserve the losslessness for each read but relax the order restriction for a group of

reads in one FASTQ file. Given K reads, each of length N , then after compression and

decompression we have:
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(3.12)

where F , G are the corresponding functions of f , g that can handle a vector of X, and each

XN
k should be identical to one XN

ij
, i.e., ∀k ∈ [1, K], XN

k ,∃ij ∈ [1, K] such that XN
k = XN

ij
.

Moreover, there is a computation cost for F (·, ·) and G(·, ·). We use Tf and Tg to denote

the time cost for the encoding and decoding process. Our algorithm should consider both

the compression time cost and compression ratio, and therefore we define s(CR, T ) as a

score function, where CR is the compression ratio and T is the (de)compression time.

The goal is to construct an encoding/decoding pair that maximizes s(N/K, Tf + Tg)

while preserving Equations 3.11 and 3.12.

For clarification, I will first describe the reference-based genome sequence compression

problem briefly. Genome sequence matching is a process of comparing the genetic information

(DNA sequences) of different organisms to identify similarities or differences. The ideal

scenario is that each read is just a subsequence of the reference (the exact match), so we

only need to mark the matching position for each read. However, the sequence can have

modification, insertion, and deletion that complicate the matching process. The existing

algorithms often cannot match sequences with insertions and deletions well, resulting in a

lower compression ratio. I aim to improve this alignment process.
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Figure 3.12: Genome sequence compression architecture: The read thread must be sequen-
tial, but workers can proceed in parallel. The read buffer and write buffer allow maximum
parallelism for the whole pipeline.

3.3.2 Parallel Compression Architecture

We propose the compression architecture shown in Figure 3.12. The architecture employs

one read thread, one write thread, and several worker threads to perform compression. These

threads are synchronized by read and write buffers (in the program, the synchronization is

performed by condition variables and mutexes). The read thread continues reading data

from disks and stores them in the read buffer in memory. The worker will try to read a

chunk from the read buffer. When the data is ready, one worker will retrieve it and remove

the entry in the read buffer so that the read thread can read the next chunk. After the

worker finishes compression, it puts the compressed data in the write buffer and tries to

retrieve the next chunk from the read buffer. If the write buffer is full or the read buffer is
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empty, the worker thread waits. This design allows FastqZip to compress extremely large

FASTQ files without breaking memory limits and to achieve high degrees of parallelism.

Before everything, the index loader loads the index into memory and creates one if the

index does not exist on the disk. During compression, the read thread reads the FASTQ files

sequentially, decompresses them into strings, and puts them in the read buffer, where each

chunk takes up one buffer space. Multiple workers contend to get one chunk’s data from the

read buffer and start the compression procedure. Each worker goes through the three main

parts of our compression procedure, produces a compressed chunk, and puts the result into

the write buffer. The write thread monitors the write buffer and constantly writes the data

into the compressed file when there is data in the write buffer.

This architecture supports parallelism by allowing multiple workers to compress each

chunk independently and write to the compressed file without waiting for any other workers.

Moreover, we propose a compressed file structure that allows parallel reading which enhances

the parallel decompression performance. However, there is only one read thread because gzip

can only be decompressed sequentially from the start. When there are more workers, the

read thread can soon be too slow to fill up the read buffer. We will evaluate the parallelism

and scalability in Section 4.2.

3.3.3 Indexing Method

We employ a key-value map as an index for an efficient aligment process because naive

long-string comparison is slow. We only need to build the index once for each reference

sequence; once built, it can be loaded into memory rapidly during compression. As depicted

in Figure 3.13, the short seed sequences function as keys, and seed positions in the reference

sequence serve as values. To simplify the storage of the index file, we propose three concepts:

(1) forward sequence, (2) range index, and (3) forward index. The forward sequence connects

the reference sequences to form one long sequence, and replaces all non-ACGT bases with ‘A’.
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Figure 3.13: Index concept: we look for all valid seeds in the reference sequence and record
their positions. There are multiple positions because the same seed may appear multiple
times in different locations on the reference sequence.

The range index is a fixed-length array used to store the cumulative number of repetitions

for seeds, as shown in Figure 3.14. The forward index stores the reference positions in seed-

converted integer order. For example, in Figure 3.14, seed1 and seed2 appear once each in

the reference sequence, at positions 59 and 98, respectively, and seed3 appears three times,

at positions 180, 340, and 790.
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index
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0
13

5 555

forward
index 340 79018098

0 1 2 3 4
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Figure 3.14: Index storage: The range index and forward index arrays together store the
reference positions for all seeds. A seed can be uniquely mapped to an index i in the range
index array. The value in range index[i] is the starting index in the forward index array, and
the value in range index[i+1] is the index after the ending index in the forward index array.
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Figure 3.15: Alignment procedure: when multiple seeds exist on a single read, if a match
exists, two seeds should match to the same starting position on the reference. If the candidate
sequence on the reference has a very low Hamming Distance against the read, it is a match.
If there are the same starting positions, but the Hamming Distance is large, we use our
proposed local alignment to find a match with insertion or deletion.

3.3.4 Alignment Procedure

The core stage that improves the alignment capability in our algorithm is the alignment

procedure, illustrated in Figure 3.15. For each read, we iterate through the seeds in both

forward and backward directions and calculate the starting position of the read in the ref-

erence sequence. If two seeds appear to have the same starting position, likely, the read is

indeed cut from the reference at that position. We consider this read a matchable candi-

date when the same reference start is found. We need also to verify whether the match is

exact. To make this process fast, we calculate the Hamming Distance[9], an XOR between

two sequences. When there is no difference or only a few base modifications, the Hamming

Distance will be small, and we can consider that a match is found.
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We improve sequence alignment capability by further conducting a local search to calcu-

late the Edit Distance[103] when the same reference start is found but the Hamming Distance

is large. A matchable sequence with a large Hamming Distance is usually caused by inser-

tion or deletion. Prior works[48, 81, 29] consider such cases unmatchable sequences. We use

the WFA-2 algorithm[70, 71] to obtain the Edit Distance and the alignment CIGAR[50] to

reconstruct the original read with insertions or deletions.
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Figure 3.16: Dominant quality bitmap generation: when a quality score is dominant over
others, we use 1 to mark them and remove them in the quality score sequence. We continue
to find a dominant quality score in the remaining sequence and repeat the process. In the
end, only a few non-dominant qualities will remain in the sequence. We store a bitmap, a
dominant length array, a dominant quality array, and the remaining quality sequence.

3.3.5 Segmentation Process

The segmentation process connects short map results to form a single aggregated segment

for better lossless compression. The sequence and quality will be handled separately.

In sequence segmentation, we can further reduce the reference position storage by using
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the difference between positions (delta) when possible. For example, when two reads have

quite close reference positions—the first read’s reference position is 14340909 and the second

read’s position is 14340997—the delta is just 88, and therefore we can use fewer bits to store

the delta compared to the primary position. Moreover, for paired FASTQ files, each Map

Result stores two related reads r1 and r2, which usually form a reverse complement pair.

We will switch the forward read’s result to r1 so there is a higher chance for delta to be valid

in the following segmentation process.

For quality segmentation, we use bin-quantization, dominant bitmaps, or Huffman coding

to reduce their size. In each Map Result, the quality scores are a string of the read’s length.

According to the FASTQ format, there are 94 possible characters (from 0x21 to 0x7e) in

total for each score. We propose a dominant bitmap solution as illustrated in Figure 3.16 to

handle this situation. The idea is to use a bit instead of a byte to store each dominant quality

and let the dominant quality be further compressed by a lossless compression algorithm such

as the run-length algorithm. Moreover, it is possible to cluster the scores together to form

fewer quality scores if the user allows a less fine-grained quality. We call this method bin-

quantization. In reality, sequencing platforms such as Illumina[25] only provide fewer than 10

different quality scores. In this case, Huffman coding has excellent compression performance

and is fast to complete.

3.3.6 Lossless Compression

Many fields in our segmentation process can be further compressed by general-purpose loss-

less compression algorithms such as Zstd[110] and Zpaq[69]. The lossless compression mainly

deals with repeated patterns such as a long sequence of 1s or 0s in our bitmaps. Since these

compressors compress a stream of bytes, we consider them as a black box to reduce field sizes.

However, it is worth noting that these compressors have to store some additional header in-

formation during compression and thus do not necessarily reduce the sizes for certain fields.
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Therefore, we need to be wise in selecting compressors or ignoring any compressors when

dealing with different fields.
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Figure 3.17: Compressed file structure: each chunk independently compresses its content,
and provide a chunk total size to the main thread. The main thread will record each chunk’s
starting position, and save a table at the end of the file.

We design a compressor selection process on a test chunk to determine which compressor

with which level best fits a certain field. The selection process takes both the compression

time and compression ratio into consideration. It calculates a score based on each compres-

sor’s performance on the test chunk and selects the best compressor for each field. This

selection process is pure overhead for the overall compression, and thus, we use a relatively

small test chunk and fix the compressor selection for the actual compression process. Dur-
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ing our evaluations, we found that, in general, Zstd[110] is most suitable for the sequence

segmenter’s field, and BSC[80] is most suitable for the quality segmenter’s field when con-

sidering both compression time and ratio. Zpaq[69] is the best at compression ratio, but it

is several times slower compared to other compressors.

We illustrate our final compressed file structure in Figure 3.17. The file header has a

fixed length and will be written at the beginning of the compression. It stores metadata

such as the FastqZip version, whether the read names are kept, whether Gzip[33] will be

used in decompression, the sequence mode (single or paired), and so on. The chunk table

address can only be known after all chunks have been compressed and written to disk. The

writer thread will write the chunk table and then move the file pointer back to write the

chunk table address. After the chunk table address is written, the whole compressed file is

successfully stored on disk. Each chunk has its own header so that it can be independent of

other chunks for better parallelism. The chunk header stores the number of elements and

the compressed size for each field. The sequence segment has 11 fields, while the quality

segment has four fields or just one field if Huffman coding is used to replace the dominant

bitmap solution. The name segment stores the read names and comments if the read names

are selected to be kept.

3.4 Layer-by-layer Compression

When there are many CPU cores in a machine, there needs to be a way to separate the data

independently for each core to compress without mitigating the overall compression ratio.

Moreover, the memory limit can be a huge problem to parallelize compression/decompression

because a large amount of data needs to be loaded and the compressors also need certain

additional memory and may require copying the raw data from time to time. Most existing

compressors including ZFP, SZ3 need to load the entire dataset into memory for compression

and are not directly applicable for extremely large single-file datasets. I explore ways to
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cut the data with a layer-by-layer compression mechanism, allowing the data to be loaded

consecutively while distributed to multiple CPU cores on multiple nodes.
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(A) Layer-by-layer streaming compression (B) Block-by-block splitting compression

Figure 3.18: Techniques to split large files into smaller blocks or layers to resolve the out-of-
memory problem.

The proposed layer-by-layer compression technology to compress exceedingly large files

is shown in Figure 3.18 (A). While data can be split in other ways, as shown in Figure 3.18

(B), we favor layer-by-layer because (1) with other methods, the data points of a ‘block’ do

not sit in continuous disk space and thus would require multiple seek operations that slow

down I/O; and (2) the simplicity of layers makes it easy to parallelize the compression. A

layer-by-layer streaming compression method transforms a 3D tensor into a sequence of 2D

layers or slim 3D tensors. This technique can divide the files into smaller sections and then

compress each section independently, avoiding out-of-memory errors when compressing large

files.

3.4.1 MPI-based compression for HPC systems

To parallelize compression on supercomputers, we design an MPI-based architecture, as

shown in Figure 3.19. For compression, as the original file is huge, we can utilize multiple

read processes to read the tensor in parallel. The read processes send each layer’s information
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Figure 3.19: Parallel layer-by-layer compression architecture for multiple processors on sin-
gle/multiple compute nodes.

to preassigned worker processes for compression. We only use one write process because

the compression ratio of lossy floating-point tensor compression is usually quite high. For

decompression, as the decompressed data are relatively large, we assign more processes

to be writers. The advantage of this architecture allows processors on different nodes to

compress a single file collectively. Moreover, parallel I/O is very suitable for our layer-by-

layer compression method as each layer’s offset can easily be calculated in advance.

3.4.2 Multi-threading compression for cloud servers

The MPI-program requires dedicated commands including ‘mpirun’ to call CPU cores on

different compute nodes, but many users may only use one single computer or a cloud server

that does not have multi-node computation. In this scenario, we provide a multi-threading

implementation of the layer-by-layer algorithm. The advantage is that this can be easily

integrated into other programs without the need of MPI-related commands. We also created

a Python binding for this mechanism so that users can directly run the parallel compression in

a Jupyter Notebook or other Python environment. The architecture for this multi-threading
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implementation is very similar to Figure 3.12.

3.5 Compression and Transfer Orchestration
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Figure 3.20: GlobaZip decouples the task execution from task manipulation and provides
a universal data management interface for users to compress, transfer, analyze, and store
various types of data.

To allow an easy control of compression and transfer for different types of data, I present

an overview of the system GlobaZip in Figure 3.20, an orchestrator that interacts with the

compressors, datasets, and transfer service on remote endpoints. The users interact with

GlobaZip through a graphical interface, as shown in Figure 3.21. GlobaZip provides a fine-
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Figure 3.21: GlobaZip graphical user interface: users can control data transfer and compres-
sion with different algorithms between configured computing clusters. All the authentications
are done when configuring the endpoints. Users no longer need to repeatedly authenticate
when running jobs.

grained control over user-defined machines and allow users to choose different compressors

against various datasets. GlobaZip can map the datasets from multiple clusters to a logical

directory so that users do not need to worry about the exact physical location of their

desired datasets. I use color maps to offer a data preview option for floating-point tensors,

which allow users to set multiple error bounds according to visual results. Users can also

easily develop plugins to add their data analysis program to the GlobaZip framework. With

GlobaZip, data scientists no longer need to repeatedly log in to each cluster to perform

data compression/analysis tasks and transfer the results back to their personal computers

for visualization.
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Figure 3.22: GlobaZip employs historical compute node wait times and compression/transfer
time estimates in deciding whether to compress a transfer.

GlobaZip deploys long-term running endpoints on computing clusters, which gather in-

formation about datasets and compression performance. The information helps GlobaZip

predict the future compression time and determine the busyness of each cluster. The es-

timated compression time helps GlobaZip decide the preallocated time for a batch job on

shared systems. The benefit of this approach compared to the previous compression per-

formance prediction work is that it does not have an additional cost when users perform a

compression task. Moreover, the endpoint serves as a convenient stable downloader that can

download datasets from the public network with a very slow transfer rate. The long-term

running endpoint avoids the stable connection requirement to users’ devices and thus can

successfully download files for several days without encountering an SSH connection pipeline
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broken error or an accidental network drop that often occurs when users try to download

datasets through their laptop.

GlobaZip features a high adaptability to the execution environment as shown in Fig-

ure 3.22. GlobaZip refers to its historical data about cluster load and estimates the time

to acquire a compute node. If the estimated wait time is over long, GlobaZip directly initi-

ates a transfer task via Globus Transfer. If the estimated compression/decompression time

plus the transfer time of compressed files can benefit the overall throughput, GlobaZip will

do compression. If a cluster cannot run the desired software, GlobaZip will automatically

perform a roundtrip approach: transfer the data to another cluster for compression and

then transfer compressed data to the destination. We show in the following that due to

high network bandwidths among supercomputers, the roundtrip approach can still reduce

the total time for transferring data to cloud computing servers or personal computers which

suffer slow networks. On supercomputers, data transfer is conducted on previously allocated

Data Transfer Nodes (DTNs) and is managed through the Globus Transfer API. For per-

sonal computers and cloud computing servers, users can manually set up the endpoints and

include it in the GlobaZip.

3.6 Optimization of Data Transfer with Error-bounded Lossy

Compression

The compression performance prediction model described above provides a fast and auto-

matic way to determine appropriate compressor settings. However, compression remains a

computational expensive process, especially with large data. In GlobaZip, we utilize multiple

cores/nodes to compress files in parallel.

Nonetheless, it is worth noting that there are two issues that may impede the “compress

and transfer” performance. First, for large datasets the compression task may exceed the

capacity available on DTNs or login nodes, and thus require provisioning of compute nodes
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via batch scheduler. Such requests may not be scheduled immediately. Second, the number

and size of files significantly influence the transfer speed because (1) each file transfer has

an inevitable data handling cost in addition to data transfer time, and many small files may

significantly lower the overall transfer throughput; (2) transfers with too few files cannot

utilize the available concurrent transfer threads.

We describe our transfer performance optimization strategies in this section. To address

the first issue, we need a strategy to transfer files when compute nodes are not immediately

available. For the second issue, we need an efficient file grouping method to counter issues

with many compressed small files.

3.6.1 Parallel Compression/Decompression

Our fundamental approach to reduce the transfer time is using compression methods to

reduce the file sizes. However, each compression suffers a certain time cost, thus if we

compress thousands of files sequentially, the total compression time may surpass the transfer

time. We utilize parallel computing to significantly accelerate the compression process. We

investigate the performance of different levels of parallelization: as shown in Figure 3.23

(left), the increase in the number of CPU cores significantly reduces the time needed to

compress these datasets because they consist of many independent files. To address this

issue, we let each core handle the compression of a set of files in parallel. The compression

time cannot be further reduced when the number of cores reaches the number of files to be

compressed because of the saturation of the parallelism.

Our experiments show that decompression performance does not increase monotonically

with the number of CPU cores. For instance, decompressing the CESM [46] dataset on

Cori takes 68.7s on four nodes but more than 5 minutes on 16 nodes. We conduct a more

thorough test for parallel decompression on the Purdue Anvil machine, and the result is

shown in Figure 3.23 (right). We see in this experiment that performance degrades with
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Figure 3.23: Parallel compression and decompression times vs. number of nodes, as measured
on Purdue Anvil. Each node has 128 CPU cores.

more nodes. We believe this to be due to I/O contention on a shared file system. We can

avoid the slow-down by tuning the number of cores to the parallel file system.

3.6.2 Optimization for Node Waiting Time

The uncertain wait time on compression tasks and transfer tasks may degrade transfer per-

formance when involving compression. In most systems there are infrequently sufficient

nodes available immediately to do the compression when users submit the data compression

tasks. If the compression tasks are stuck too long in the scheduler queue, the overall transfer

performance would be even slower than transferring without compression.

In order to counter the node waiting time, we run a sentinel program to monitor and

schedule the transfer/compression task. As shown in Figure 3.24, when a user submits a

transfer request (with lossy compression option turned on) which is not assigned compute

nodes immediately, we start transferring the files in groups without compression. Once a file

transfer is complete, we write their filenames in a meta file so that the compression scheduler

knows which files no longer need compression. When the compute nodes are assigned, the

sentinel program notifies the transfer tasks to stop and let the parallel compression scheduler
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Figure 3.24: Transfer without compression during node waiting time: the monitoring pro-
gram submit the compression task; while waiting for nodes, the transfer service is already
transferring the data without compression.

take over the remaining files. In this way, the data transfer is not be suspended because of

waiting for nodes, and the worst-case is that all data are transferred without compression

(when the nodes are not assigned through the whole period). In production deployments,

we anticipate that the Ocelot service could be deployed on dedicated cluster nodes (e.g.,

DTNs) with the approval of system administrator (similar to Globus service). In this case,

wait time would be only dependent on other Ocelot transfers sharing those resources.

3.6.3 File Grouping for High Data Transfer Throughput

We propose a file grouping strategy to improve the data transfer throughput based on our

observation that the number of files and file sizes may significantly affect the transfer speed

(as shown in Table 3.4). Although the effective transfer speed fluctuates due to network and

I/O contention, we generally see that the effective network speed decreases as the number

of files increases, when transferring the same amount of data. This motivates us to optimize
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the file transfer speed by grouping small files together.

Table 3.4: File Transfer Patterns between two supercomputers: Nersc Cori and Argonne
Bebop

Total size File size # Files Speed (MB/s) Duration (s)
300GB 1M 300000 247.0 1235
300GB 10M 30000 921.1 325
300GB 100M 3000 1120.0 267
300GB 1000M 300 1060.0 281
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Figure 3.25: Parallel compression optimization by grouping small compressed files to achieve
higher transfer speed.

Grouping small compressed files can increase a single file’s size and reduce the number

of files, and thus improve transfer speed. As shown in Figure 3.25, we compress files in

parallel and group many compressed files to achieve a better size for transfer. We use MPI

to communicate the compressed sizes among CPU cores to determine the file offset for each

core to write. Each grouped file has a header and a body of connected compressed data. The

header contains information about the number of compressed files in this group, the starting

offset, and the size of each file. The metadata text file contains human-readable information

about the number of files, grouping strategy, and the original filenames that are useful for

decompression. The default strategy is to group files by the “world size”, i.e., the available

number of cores for compression, because they run in parallel and can usually finish the
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compression at a similar time. According to the profiling test and information provided by

the administrator, we know in advance the preferred size for each file to achieve the fastest

transfer speed. Thus, the compression scheduler can also determine the number of files to

put in one group based on the file sizes.
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CHAPTER 4

EVALUATION

In this chapter, we examine GlobaZip’s performance in terms of data constraints perser-

vation, prediction accuracy, scalability, compression speed, compression ratio, and com-

pare multiple proposed algorithms with other state-of-the-art methods. The sections are

adapted from the following papers: DRBSD-7[64], HiPC 2021[65], TPDS 2022[66], and

ICDCS 2023[63].

4.1 Experimental Settings

We collect performance data on 2 ACCESS supercomputers (Purdue Anvil, Rockfish), 2

Alibaba ECS machines, and 1 Argonne supercomputer with specifications in Table 4.1. The

network bandwidth for all the supercomputers are 100 Gbps, while for Alibaba ECS, the

default is 1 MB/s, with a maximum configuration of 100 MB/s—highlighting a significant

network disparity between supercomputers and cloud clusters.

Table 4.1: Machine Specifications: Cores and Memory indicate a single compute node’s total.
Machine CPU Cores Memory
Rockfish Intel Xeon Gold

Cascade Lake
6248R

64 192 GB

Purdue Anvil AMD EPYC
7543 32-Core
Processor

128 256 GB

Argonne Bebop Intel Xeon E5-
2695v4 & Phi
7230

36 128GB

Alibaba ecs.c7se.4xlarge Intel Xeon Plat-
inum 8369B

16 32 GB

Alibaba ecs.g7.32xlarge Intel Xeon Plat-
inum 8369B

128 512 GB

For floating-point tensor compression, we employ 6 moderately sized datasets, QMCPACK[76],

ISABEL[41], RTM, Miranda [73], CESM [46], and Nyx [74], and two large datasets, Forced
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Table 4.2: Floating-point Tensor datasets
Application Description Dimensions Sizes
QMCPACK electronic structure

calculations of
molecular, periodic
2D, and periodic
3D solid-state sys-
tems

33120×69×69
(float32)

150MB

ISABEL temperature,
speed, etc.

100×500×500
(float32)

95MB

RTM seismic imaging in
complicated areas

235×449×449
(float32)

180MB

Miranda Hydrodynamics
code for large tur-
bulence simulations

256×384×384
(float32)

144MB

CESM cloud, temperature,
pressure in climate
simulation.

1800×3600
(float32)

25MB

Nyx density, tempera-
ture in cosmology
simulation

512×512×512
(float32)

512MB

Turbulent
Channel
Flow

Pressure field of a
direct numerical
simulation of forced
isotropic turbu-
lence.

4096×4096×4096
(float32)

256GB

Forced
Isotropic
Turbulence

A pressure field of
a direct numerical
simulation of fully
developed flow

10240×7680×1536
(float64)

900GB

Isotropic Turbulence and Turbulent Channel Flow [49]: see Table 4.2. The two quantitative

metrics we use to measure the data quality are RMSE and PSNR, and we will briefly intro-

duce their meaning below. The root-mean-square error (RMSE) is a frequently used measure

of the differences between values. We calculate the mean error between the decompressed

data values and the original values to understand how much error the compression algorithm

brings into the data. The term peak signal-to-noise ratio (PSNR) is an expression for the

ratio between the maximum possible value (power) of a signal and the power of distorting

noise. PSNR will not be severely affected by the data ranges, and we can have a universal

understanding of how good the data is.
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Table 4.3: Genome Sequence Datasets
Dataset Platform Symbol Size
E100024251 L01 104[37] DNBSEQ-T7 A 18+20 GB
CL100076243 L01[1] BGISEQ-500 B 54+55 GB
E100030471QC960 L01[2] DNBSEQ-T7 C 28+27 GB

For genome sequence compression, we evaluate the compressors on three datasets se-

quenced on different platforms and with various lengths: see Table 4.3 — we refer to these

datasets as A, B, C in the following text.

4.2 Evaluation of Genome Sequence Compression

We compare the performance of our genome sequence compression algorithm against that of

three modern genome sequence compression algorithms: Spring[12], GTZ[95], and genozip[48].

We measure compression ratio (CR), (de)compression CPU time, and (de)compression wall

time. As shown in Figure 4.1, Spring compresses more slowly and achieves a lower com-

pression ratio than the other methods, and thus we do not consider it further. GTZ[95] is

fast but has a lower compression ratio. It has a bug in paired FASTQ file compression that

we could not resolve and for which we could not get timely support. We conclude that the

best existing genome compression algorithm is Genozip[48] in terms of project completeness,

ease of use, compression ratio, and compression speed. We present a more detailed compar-

ison with Genozip in Table 4.4. Note that the compression ratio is calculated based on the

gzipped original file sizes.

Our findings indicate that our algorithm has demonstrated advantages in both compres-

sion ratio and compression time across the three paired sequence datasets. Our algorithm

allocates additional time to sequence alignment to achieve a superior compression ratio.

However, the overall (de)compression time is reduced due to our multi-threading architec-

ture disregarding the order of reads and string identifiers. In contrast, Genozip ensures

complete lossless compression. We assert the validity of our algorithm for the following
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Figure 4.1: Compression time and ratio comparison on the first file of E100024251 L01 104.
Each algorithm uses 16 threads on the ecs.c7se.4xlarge machine.

Table 4.4: Our algorithm vs. Genozip. CR: compression ratio; CPTime: CPU time in
compression; DPTime: CPU time in decompression.

Compressor Dataset CR CPTime DPTime

Our Algorithm

A 3.37 151m48s 94m20s
B 2.44 417m17s 251m15s
C 2.54 522m16s 245m31s

Genozip

A 3.14 160m28s 100m14s
B 2.33 572m5s 303m54s
C 2.45 526m43s 281m14s

facts: in FASTQ files, each read is self-contained, and the string identifier typically per-

tains only to sequencing machine specifications, which are inconsequential for downstream

analysis.

We analyze our algorithm’s memory and CPU utilization. In Figure 4.2, memory usage

ranges between 50% and 60% (∼19 GB) when all CPU resources are utilized. If memory is

limited, say to 16 GB, reducing the number of threads or decreasing the read number can

reduce the memory demand. On the other hand, our algorithm is capable of fully utilizing

computing resources with an appropriate number of threads. Figure 4.2 (B) shows that by

setting the thread number to 16 (the number of available CPUs), each worker can take up

one CPU core and reach over 90% of CPU utilization. The slight oversubscription shown in
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Figure 4.2: Memory and CPU usage in compression. Tests are run on a ecs.c7se.4xlarge
cloud server with 16 CPUs and 32 GB memory; the dataset is E100024251 L01 104.

Figure 4.2 (C) does not increase the CPU utilization more while having some troughs that

drop to 65% of utilization. We can safely conclude that setting the thread number to the

number of CPU cores available can utilize the computing resources well enough.

Lastly, we analyze the scalability of our algorithm by recording compression wall time

as we increase the number of threads. As shown in Figure 4.3, our algorithm scales well

when there are fewer than 16 threads. The I/O wait computation time decreases to 0 when

there are 20 threads, meaning the I/O has been too slow to provide sufficient data for so

many threads to consume. If the I/O is faster than the computation, the read buffer will

build up to full and the I/O has to wait for the computation to finish to continue reading

data. The total compression time converges with fastqIO read time when enough threads
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Figure 4.3: Scalability evaluation of our algorithm: The evaluation is performed on
ecs.g7.32xlarge with sufficient CPUs and memory.

are provided. As the genome sequence data is currently distributed by gzip or plain text

format, there is very little room to optimize for parallel I/O. However, we will show that our

method to compress floating-point tensors can scale up further with faster parallel I/O on

supercomputers in the next section.

4.3 Evaluation of Layer-by-Layer Parallel Compression

Techniques

We first evaluate the relationship between layer depth and compression ratio for our pro-

posed layer-by-layer compression algorithm on the four 3D floating-point tensor applications.

As Figure 4.4 shows, the compression ratio increases when the layer gets thicker for most

datasets. This is because the 3D tensor gives the compressor more information to predict

nearby data values. The current SZ3 3D interpolation method can reach a higher com-

pression ratio for 3D data. However, we also notice that after the thickness reaches 32 for

Miranda and Nyx, the compression ratio does not increase clearly. That is, when applying

such a thin layer, we can already reach a good compression ratio with a small amount of
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Figure 4.4: Compression rate vs. Layer Depth: Multiple fields in Nyx, Miranda and two
large tensors Turbulent Channel Flow and Forced Isotropic Turbulence.

memory or a high level of parallelization. The Forced Isotropic Turbulence result shows that

for certain huge datasets, the 2D layer already contains many data points for prediction,

which might even outperform 3D compression in terms of compression ratio.

We then evaluate the compressed data quality with point-wise error distribution and

visualization. The experiment result shows that our layer-by-layer compression method has

comparable or even superior compression quality compared to the traditional all-together

method. The pointwise error distribution changes when using layer-by-layer compression:

see Figure 4.5. This approach appears to have a more concentrated error for both Miranda

and Nyx datasets, although it has a slightly worse compression ratio due to the overhead

of describing each layer. We can also verify the compression quality via the visualization

method provided by GlobaZip in Figure 4.6, where there is no obvious difference between

the original data and our compressed data.

Next, we evaluate the scalability of our multi-threaded layer-by-layer compression algo-
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Figure 4.5: Nyx temperature and Miranda density pointwise error distribution. The error
bound is set to 0.01 for all four configurations. The layer depth is set to 32 for layer-by-layer
compression. The compression ratios are (A) 2.17 (B) 2.07 (C) 313, (D) 297.

rithm. Figure 4.7 shows that our algorithm can benefit from multiple CPU cores to compress

a huge file in a much shorter time. The total compression wall time ceases to decrease af-

ter reaching 16 threads because the I/O has become the bottleneck. The program spends

160 seconds compressing 270GB of data, while the total amount of read time is 100s, the

overhead of multi-thread is quite minimal. To further improve the performance, parallel

I/O is needed as the read speed has become a bottleneck. Also, we note that the memory

consumption is higher in decompression with more threads while the memory consumption

is higher in compression with fewer than 16 threads. This is because the write I/O becomes

a bottleneck in decompression and many worker threads hold the decompressed data to be

written. This can cause an out-of-memory error with a mismatched I/O speed and number

of threads.

We further improve the scalability by utilizing MPI programming with parallel I/O sup-

port and multi-node coordination. To avoid the out-of-memory problem for Forced Isotropic
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Figure 4.6: Miranda density and Nyx temperature visualization results. The compressed
data with either method looks identical to the original data.

Turbulence and optimize (de)compression time, we limit the tasks-per-node parameter to 32

but increase the number of nodes to get more CPU cores, e.g. we used 8 nodes to get 256

processors. Also, we keep the ratio of the number of I/O processes and the number of worker

processors 1:8 to reach near-optimal performance. As Figure 4.8 shows, the (de)compression

time continues to decrease after using more CPU cores. We also notice that this approach’s

total time is much lower than the multi-threading method even with the same number of

threads/processes. It is largely because we use a more proper ratio of I/O processes and

worker processes. In the multi-threading model, when the worker threads are more than

the read thread’s ability to fill up the read queue, workers may contend for locks with a

higher overhead time. Most existing error-bounded compressors have no such capability to

parallelize to this scale. Our approach extends float-point tensor compression to non-uniform

memory access systems.

Another advantage of our method is that it demands minimal memory for compression,
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Figure 4.7: Compression ratio/time vs. number of threads for the two large datasets. The
layer depth is set to 4.

particularly with thin layers. As shown in Figure 4.9, the layer depth determines the peak

memory consumption. For a thin layer with depth 1, the program only needs 1%, 5 GB

memory to compress a file of over 900GB. Other compressors like SZ3, SZ, ZFP, and MGARD

face challenges with large tensors, primarily due to memory limitations. On the other hand,

our program can run on multiple nodes to utilize memory on multiple nodes with thicker

layers to obtain a better compression ratio.

4.4 Evaluation of Compression Performance Prediction

In this section, we evaluate the compression performance prediction on compression ratio,

compression time, and PSNR for data quality. We focus on SZ2 [53], SZ3 [57] and their

variants because our compression quality prediction method is based on the prediction-based

compression model.
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Figure 4.8: Compression performance comparison between single-node multi-threaded and
multi-node multi-process methods. The multi-thread line stops at 128 threads because the
memory is insufficient with more threads on a single node and the program would exit with
an out-of-memory error.

4.4.1 Estimation of Compression Time and Ratio

To make an estimation of compression time and ratio, we apply a decision tree regressor

model on 11 features described earlier, and train on 30% of files from each of the applications

in Table 4.2 (the remaining 70% serves as testing data). We set 11 different error bounds

from 1e-6 to 1e-1 to compress the data and collect the features for training.

The distribution of the difference between the predicted values and real values is shown

in Figure 4.10. The green bounding box shows the 80% confidence interval, meaning 80%

of prediction error falls into the green box. Thinner box means higher prediction accuracy.

Figure 4.10 indicates our prediction method performs very well, as the differences between

predicted and actual values are very close to 0.

The prediction has a negligible overhead (around 1.7%) compared with the total com-

pression time when we sample 1% of data (using 1 data point every 100 data points). As

shown in Figure 4.11 (A), the sampling helps reduce the overhead time from more than 70%

to less than 5%. The extracted compressor-based features p0 and P0 are different from the
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Figure 4.9: Compression time and memory consumption of 4-thread layer-by-layer compres-
sion on Turbulent Channel Flow dataset. Experiment on Purdue Anvil shared partition
with 4 tasks per node and 512 GB memory.

actual percentage of the zero quantization code because we run the Lorenzo prediction with

the real data values instead of the reconstructed data values.

Figure 4.12 shows a high correlation between compression time and the compressor-level

features. In fact, the datasets’ compression times are similar with each other as long as they

have the same dimensions (usually because they belong to the same application) as shown

in Figure 4.11 (B). This pattern helps us estimate the overall compression time accurately

in parallel compression: the rough estimation would be the number of datasets divided by

the number of cores then multiplied by the average compression time per one dataset.

Table 4.5 shows the prediction results for our datasets. We can observe from the values

that the compression time is gathered into groups related to the application to which they

belong. Moreover, we see that our model can always precisely predict the compression ratio

and time at different error-bound settings. This is because the distribution of the quantiza-

tion code changes according to error bounds, and our model captures this information with
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Figure 4.10: Nyx/CESM/Miranda application compression time and ratio prediction error
distribution (measured on Bebop KNL partition): the X-axis is the difference between the
predicted value and the real value, the Y-axis is the percentage for each small range of
difference values.

p0, P0 and the quantization entropy effectively.

4.4.2 Estimation of Data Quality via PSNR

We use 50% of gathered data for training, and perform the compression quality prediction

test for the remaining 50% of data. Table 4.6 shows the PSNR based on 10 data files

randomly selected in the CESM application, where the root mean squared error of the PSNR

prediction is 13.05. Table 4.7 shows a similar prediction result for the ISABEL application,

and the corresponding root mean squared error of PSNR is 14.23. Unlike the prediction of

compression ratio/time which is fairly accurate, the prediction of PSNR is good in most cases

yet still suffers relatively high errors occasionally on a few datasets. We plan to improve it

in our future work.

We explain the key reasons why the PSNR is predictable as follows. On one hand, if the

quantization bins often gather around zero (especially when a relatively large error bound is

used), the predicted values are likely unable to be corrected by quantization bins, leading to

relatively low PSNR. On the other hand, if the zero quantization bin takes a tiny percentage,

76



Figure 4.11: (A) Overhead time analysis on Nyx application; (B) Compression time range
on Bebop and Anvil machines for multiple applications.

Figure 4.12: RTM application compression time versus compressor-level features

this means the quantization bins are likely very small because of the small error bounds used.

In this situation, many data points would be corrected by the quantization bins or stored as

they are based on the SZ compression model, thus leading to relatively high PSNR.

We explain why the prediction of PSNR may not be as precise as the compression ratio’s

prediction as follows. In fact, when p0 and the quantization entropy are in the middle, most

data points can still be the quantization-based reconstructed data, and it is unclear how far

away these data points are from the original data values. They can be either an error bound

away or quite close, therefore it is unclear how they will contribute to the final PSNR based

on the selected features.

With the settings shown in Table 4.6, we visualize the original and compressed data of
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Table 4.5: Compression Time and Ratio Prediction Examples: EB denotes error bound,
CR denotes compression ration, CPTime denotes compression time. P-CR and P-CPTime
denote predicted compression ratio and compression time, respectively. All time-related
information is measured on Bebop machine in KNL partition.

Dataset EB P-CR CR P-CPTime CPTime
Nyx 1e-6 1.19 1.18 35.9 35.6
Baryon Density 1e-4 3.15 3.10 32.3 33.3

1e-2 10.40 10.20 30.3 30.3
CESM 1e-6 1.139 1.135 1.459 1.456
LHFLX 1e-3 2.56 2.49 1.97 1.59

1e-2 5.25 4.43 1.55 1.50
CESM 1e-6 5.36 6.97 1.61 1.85
SNOWHICE 1e-4 21.0 21.9 1.55 1.58

1e-3 48.0 52.8 1.40 1.48
RTM-1982 1e-6 4.78 4.80 13.85 13.32
RTM-1048 1e-4 24.72 24.89 13.1 13.3
RTM-0594 1e-4 83.15 84.99 12.13 11.43
Miranda 1e-2 18.99 16.74 9.57 9.31
Velocity-x 1e-3 7.11 7.67 10.17 9.7

1e-1 9.11 9.43 52.05 52.49

three data files in Figure 4.13. From our experience, when PSNR is higher than 50, there is

no visible visual difference between the original and compressed data. Therefore, when the

predicted PSNR is high, we are confident that the compressed data will be of a good quality

for post-analysis.

4.5 Evaluation of Data Transfer Performance

Data transfer performance is crucial in determining whether data compression is advanta-

geous for achieving a shorter transfer time, considering the additional time costs incurred

during compression and decompression. Our framework aims to be adaptable to various

network conditions to meet users’ requirements. Generally, supercomputers boast extensive

network bandwidths, whereas cloud service providers like Alibaba Cloud may provide a more

restricted network capability. We evaluate the data transfer performance of our GlobaZip
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Table 4.6: Prediction of PSNR for CESM application
Filename eb Real PSNR Predicted PSNR
TMQ 1 1800 3600.dat 1e-3 96.80 96.39
CLDMED 1 1800 3600.dat 1e-3 59.64 60.88
TROP Z 1 1800 3600.dat 1e-3 146.05 141.45
ICEFRAC 1 1800 3600.dat 1e-5 102.43 98.65
PSL 1 1800 3600.dat 1e-1 99.10 117.11
FLNSC 1 1800 3600.dat 1e-2 85.07 92.02
ODV ocar2 1 1800 3600.dat 1e-5 79.16 83.92
LHFLX 1 1800 3600.dat 1e-4 138.92 136.23
TREFHT 1 1800 3600.dat 1e-3 99.28 86.82
FSDTOA 1 1800 3600.dat 1e-6 184.85 184.86

Table 4.7: Prediction of PSNR for ISABEL dataset
Filename eb Real PSNR Predicted PSNR
QSNOWf48 log10.bin.dat 1e-2 72.85 81.11
PRECIPf48 log10.bin.dat 1e-1 52.49 52.78
QVAPORf48.bin.dat 1e-6 88.01 128.52
PRECIPf48 log10.bin.dat 1e-6 160.18 160.26
CLOUDf48 log10.bin.dat 1e-2 62.07 88.00
Wf48.bin.dat 1e-2 69.19 67.96
QSNOWf48 log10.bin.dat 1e-3 93.14 93.48
CLOUDf48 log10.bin.dat 1e-6 144.24 123.23
Pf48.bin.dat 1e-2 98.23 81.21
QSNOWf48 log10.bin.dat 1e-6 160.12 165.35

framework on the machines listed in Table 4.1.

The findings suggest that our proposed compression algorithms offer significant advan-

tages for systems with slow networks and rapid computation. As demonstrated in Table 4.8,

the performance improvement exceeds 10x when transferring data from supercomputers to

typical cloud computing clusters. While contemporary cloud computing platforms boast

comparable single-node computational capabilities to supercomputers, many are constrained

by network bandwidth limitations. Our framework holds the potential to substantially en-

hance transfer efficiency across these platforms.

On the other hand, the overall transfer time may not benefit from compression in super-

computers because of superior networks. Nonetheless, our GlobaZip framework effectively
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Figure 4.13: CESM data visualization comparison between original and compressed data:
The PSNRs are 59.64, 96.80, and 146.05 respectively, and there is no obvious visual difference
between the original and compressed data.

leverages specific characteristics to distribute computational tasks across different supercom-

puters. For example, we aim to transmit genome sequence data from Purdue Anvil to the

Alibaba ECS. Due to the absence of Intel AVX512 optimization in the AMD Zen 3 proces-

sors utilized by Purdue Anvil, our genome sequence compression code cannot be compiled

on this cluster. As a workaround, we transfer the data to Rockfish for compression before

forwarding the compressed data to the ECS destination. This roundtrip approach ultimately

optimizes overall time efficiency despite the intermediate steps involved.

4.6 Evaluation of Data Constraints Preservation

We first evaluate how our proposed methods can preserve the 5 data constraints elabotrated

in the previous section. Each data constraint is preserved by an individual method and

evaluated on multiple aforementioned floating-point number datasets.
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Table 4.8: Data compression and transfer performance. T(NP): transfer time with no com-
pression, Speed(NP): transfer speed with no compression, CPTime: time taken to compress
the data, T(CP): transfer time for compressed data, Speed(CP): transfer speed for com-
pressed data, DPTime: time taken to decompress data, Total: sum of compression time,
transfer time, and decompression time; Reduced: total time reduced with compression. All
times in seconds.
Dataset Total Size Direction T(NP) Speed(NP) CPTime T(CP) Speed(CP) DPTime Total Reduced

Nyx 3.22 GB Anvil→Rockfish 6 547 MB/s 20 38 12.3 MB/s 20 78 -72
Anvil→ECS 273 11.8 MB/s 20 42 9.49 MB/s 40 102 171
ECS→Anvil 273 10.3 MB/s 60 45 10.3 MB/s 20 125 148

Turbulent 256 GB Anvil→Rockfish 774 355 MB/s 175 55 338 MB/s 735 965 -191
Channel Flow Anvil→ECS 25,303.00 10.4 MB/s 175 1740 11.0 MB/s 134 2049 23,254.00

ECS→Anvil 23,198.00 11.3 MB/s 230 1709 11.2 MB/s 125 2064 21134
Genome A 39.27 GB Rockfish→Anvil 64 611 MB/s 1095 36 316 MB/s 375 1506 -1442

Anvil→(Rockfish)→ECS 3527 11.4 MB/s N/A 1055 11.3 MB/s 874 3088 439
ECS→(Rockfish)→Anvil 3904 10.3 MB/s 1100 1181 10.1 MB/s N/A 2692 1212

4.6.1 Preserving Irrelevant Data (constraint A) and Global Value Range

(constraint B)

The Hurricane Isabel dataset contains irrelevant data values marked as 1E35, which is well

outside the normal value range. Table 4.9 shows the value range for five of 13 fields in the

dataset which contain irrelevant (or missing) data points. The reason for the missing values

is that the data simulates an actual event (a hurricane) and, in the locations where there

is ground, no meaningful wind speed or pressure is recorded. More information about the

dataset is available on the website.1

Figure 4.14 shows the distribution of data points in the Hurricane Isabel dataset. Because

the actual value of the irrelevant data is far too large to be put in the same figure with normal

data, we use a made-up value that is outside the range of each field to represent the irrelevant

value. We can see that every field contains a non-negligible amount of irrelevant data,

although not as many as normal data points. While the amount of irrelevant data is small,

such data may severely harm the overall compression ratio because they are mixed among

normal data points, destroying the continuity of normal data. We verify this statement by

sampling a random continuous portion of the temperature field, as shown in Figure 4.15.

1. http://vis.computer.org/vis2004contest/data.html
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Table 4.9: The 5 fields tested in the Hurricane Isabel dataset
Field Description Value Range
P Pressure (weight of at-

mosphere above a grid
point)

-
5471.8579/3225.4257

TC Temperature (Celsius) -83.00402/31.51576
U X wind speed (posi-

tive means winds from
west to east)

-79.47297/85.17703

V Y wind speed (posi-
tive means winds from
south to north)

-76.03391/82.95293

W Z wind speed (positive
means upward wind)

-9.06026/28.61434

Figure 4.15 clearly shows that irrelevant data are distributed among normal data, de-

stroying the smoothness of the data space. Obviously, if we predict a normal data point

using the irrelevant data value, the prediction cannot be precise. As lossy compressor de-

signers, we want to preserve irrelevant data values while mitigating their influence on the

compression ratio. Note that even though they appear to be irrelevant for compression, they

carry potentially useful information—in this case, they indicate ground locations.

In Figure 4.16, we investigate five different ways of handling irrelevant data. Time is

measured on Bebop. The five strategies are: Ignore treats all irrelevant data as normal

data; Zero replaces all irrelevant data by 0 for simplicity; Clear replaces all irrelevant data

using the Lorenzo predictor based on their nearby values (our solution); Quant and Bitmap

indicate the storage algorithm: Quant refers to using one additional quantization bin to

mark irrelevant data, and Bitmap indicates that we use a bit array containing 1 and 0 to

indicate whether each data point is an irrelevant value or not. Figure 4.16(A) shows that

handling the irrelevant data may double the compression and decompression time. The

overhead is due primarily to additional traversing of the whole dataset to find, clean, and

recover irrelevant data. Moreover, constructing additional Huffman trees for irrelevant data

will add additional time to the compression and decompression. Figure 4.16(B) shows that
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Figure 4.14: Data distribution of the five fields in the hurricane dataset. The irrelevant data value is 1E35.
To visualize it in the distribution figure, we modify the big value to a made-up outside value that is not in
the normal data range.

handling irrelevant data is generally better than ignoring them; however, it is difficult to

determine whether it is better to clear them with the Lorenzo predictor or simply convert

them to 0. Moreover, the simple bitmap method and quantization method exhibit similar

performance. The likely reason is that irrelevant data are only a very small portion of the

entire data and thus the methods are unable to demonstrate a huge difference in terms of

the overall compression ratio. We conclude that in this scenario the quantization strategy

slightly outperforms use of a bitmap.

The global range constraint requires only a scan in the preprocessing stage to obtain the
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Clear Irrelevant Data with Lorenzo Predictor

Irrelevant Data

Normal Data

Figure 4.15: Temperature data points with (left) and without (right) irrelevant data. We show only a
sample of 10,000 points (between index 50,000 and 60,000 in the original dataset). We observe the data
points in the given index range and can see that the irrelevant data is mixed among the normal data points,
harming data continuity; after clearing them with the Lorenzo predictor, the separating effect disappears.

max and min value. After the decompression, an additional traverse will be sufficient to pull

back those few points whose values are beyond the min or max value. The time overhead is

nearly negligible, as indicated in the gray bar in Figure 4.16 (A).

4.6.2 Multi-interval Error-Bounded Compression (constraint C) Based on

Visual Quality and Post-hoc Analysis

Figures 4.17 and 4.18 show the substantial advantage of our multi-interval error bound-based

compression over the traditional constant error-bounded compression, using two datasets

(QMCPACK and Miranda). Specifically, the multi-interval-based compression preserves

higher visual quality for the value intervals of interest, while achieving the same or even

higher overall compression ratios by lowering precision on insignificant value intervals. For

instance, in the QMCPACK dataset, over 90% of the data points are located around 0, but

they are smooth and easy to be predicted by neighboring data points; however, the data

points with values in the interval of [−8,−5] are the sparse interesting values that are harder

to be predicted accurately. That is, they are more important to preserve the overall visual
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(A) Compression Time Comparison of Irrelevant Data 
Handling Method

(B) Compression Ratio Comparison of Irrelevant Data 
Handling Method

Figure 4.16: Performance of irrelevant data-handling methods: all methods slightly improve
the compression ratio with a cost of longer compression time and decompression time.

quality because the distortion of their values is easier to observe in the visualization image.

Our method grants a tighter error bound and thus a higher precision in the more im-

portant value intervals, while allowing more distortion in insignificant value ranges, such

that the overall compression ratio is not degraded. Detailed evaluation results are shown in

Table 4.10 and Table 4.11. Given similar compression ratios, our method can achieve lower

RMSE and higher PSNR in the critical value interval.

Table 4.10: QMCPACK RMSE & PSNR Comparison
Method Range eb RMSE PSNR

[-17, -8] 0.232 43.067
Global Range [-8, -5] 0.4 0.233 43.041
CR=210 [-5, 17] 0.051 56.159

[-17, -8] 1.0 0.538 35.747
Multi-Intervals [-8, -5] 0.15 0.086 51.623
CR=210 [-5, 17] 1.0 0.089 51.354

We now consider compression of the Nyx cosmological simulation with a specific quantity

of interest (i.e., dark matter halo cell information). Dark matter halos play an important

role in the formation and evolution of galaxies and consequently in cosmological simulations.
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A)Global Range; CR=210; [-17, 17] 
eb=0.4; RMSE[-8,-5]=0.233, 

PSNR=43.04

(B)Multi-Ranges; CR=210; [-17, -8) 
eb=1;[-8, -5) eb=0.15; [-5, 17) eb=1; 

RMSE[-8,-5]=0.086, PSNR=51.35
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(D)Data Distribution
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majority data 

gather around 0, 
the interesting 
data are sparse

Higher Precision 
in this range

(B) Original Data

Figure 4.17: QMCPACK data: (A) The basic
method is setting one error bound for the global
range. We can see obvious artifacts in the blue area.
Applying our multi-interval algorithm with a tighter
error bound 0.15 in the interesting value range [-8,-
5), we can see fewer artifacts in (C), while the com-
pression ratio is kept the same as the global range
method.

(C)CR=207; Multi-Ranges: [0.5, 1.4) 
eb=0.1; [1.4 2) eb=0.05; [2, 2.8)eb=0.1; 

RMSE[1.4,2]=0.027, PSNR=37.193

(A)CR=206;Global Range and single error 
bound: [0.5, 3.5) eb=0.07; 

RMSE[1.4,2]=0.036, PSNR=34.801

Artifacts

Fewer Artifacts

(D) Data Distribution

Interesting
Range

Higher Precision 
in this rangeImprove: Use a tighter error bound for the 

interesting range and thus a higher precision.

(B) Original Data

Figure 4.18: Miranda density slice No. 120. (A)
The basic method is to set a single error bound for
the global range. The artifacts are obvious com-
pared to the original data in (B). When we give the
interesting range [0.5, 1.4) a lower error bound, the
artifacts in (C) are less significant and the data qual-
ity in the interesting range is higher due to lower
error bound.

Halos are overdensities in the dark matter distribution and can be identified by using dif-

ferent algorithms; in this instance, we use the friends-of-friends algorithm [19]. For the Nyx

simulation, which is an Eulerian simulation instead of a Lagrangian simulation, the halo-

finding algorithm uses density data to identify halos [27]. For decompressed data, some of

the information can be distorted from the original, such as halo cells and halo mass.

Figure 4.19 demonstrates that setting different error bounds for different value intervals in

Nyx simulation datasets can preserve the features of interest (i.e., halo cells in this example)

better than global-range error-bounded compression can. The key reason is that according

to the Nyx halo analysis code, the values in the range of [81,83] need to be extremely precise

(the reason is related to the sophisticated physics, and we ignore the details here). For our
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Table 4.11: Miranda density RMSE & PSNR Comparison
Method Range eb RMSE PSNR

[0.5, 1.4] 0.012 44.804
Global Range [1.4, 2] 0.07 0.036 34.801
CR=206 [2, 3.5] 0.015 42.379

[0.5, 1.4] 0.1 0.013 43.5813
Multi-Intervals [1.4, 2] 0.05 0.027 37.193
CR=207 [2, 3.5] 0.1 0.018 40.682

compression task, we set three value ranges and assign a smaller error bound (0.1) to the

data in the range of [81,83]. In this way the overall compression ratio will be higher with

less distortion on the halo visualization result, as shown in Figure 4.19.

(A) Original Data (B) Fallback 
Compress 

(C) Multi-Interval 
Compress

False Positive

Figure 4.19: Nyx halo cell visualization: The fallback method sets a global error bound to
be 0.5, and the compression ratio is 75. Our solution (C) sets three ranges: [min, 81) with
error bound 1, [81, 83) with error bound 0.01, and [83, max) with error bound 1, and the
compression ratio is 78. In the visualization, our multi-interval solution (C) has cells almost
identical to the result using the original data, while the fallback method (B) shows some
distortion, and the cells’ position and number are not identical to (A).

Table 4.12 shows the substantially higher precision of our multi-interval error-bounded

compression over global-range error-bounded compression. We use RMSE of cell number

differences of halos and RMSE of mass differences of halos in comparison with original data

as two main metrics to evaluate the results. Specifically, when passed through the post hoc

analysis, our multi-interval solution can lead to significantly lower RMSE for cell number

and halo mass, compared with the original RMSE under the global-range error-bounded
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compression.

Table 4.12: Comparison of Different Range Settings. Fallback sets only a global error bound
(here 0.01 and 0.5). Multi-interval uses our multi-interval error-bounded compression with
three error bounds ([min, 81)=1, [81, 83)=0.01, and [83,max)=1)

Method RMSE of cell number RMSE of halo mass
Fallback-0.01: 0.089 125.84
Fallback-0.5: 2.820 429.26
Multi-interval: 0.198 135.41

We now investigate the combination of our methods on the Hurricane Katrina dataset.

The combined methods include handling irrelevant data, multi-interval error bound settings,

and different predictor settings (Lorenzo/linear regression).

(D) Composed; Double 
Ranges: [-1, 1) eb=0.1, [1, 10) 

eb=0.01; CR=50.78;

(1)

(2)

(3)

(A)Original* Composed; 
Global Range eb=0.01; 

CR=38.40; 

(C)Fallback Composed; Global 
Range eb=0.1; CR=42.9;

(E)Lorenzo Multirange [-1, 0.98) 
eb=0.2; [0.98, 1.02) eb=0.001; 

[1.02, 10) eb=0.01; CR=80

(B)Fallback Lorenzo; Global 
Range eb=0.1; CR=37;

Figure 4.20: Hurricane Katrina data: Each row is a frame of the Katrina simulation: (1) is
frame 120, (2) is frame 130, and (3) is frame 141. Each column represents a different setting
of ranges and error bounds. Most of the blue data points in the graphs are close to zero.

Hurricane Katrina was one of the most devastating storms in the history of the United

States because of its resulted significantly high storm surge (over 10 meters on the Mississippi

coast) and high velocity. To model Katrina, the area was discretized into 417,642 nodes

forming 826,866 unstructured meshes. The simulation was performed with a 1-second time

step, from 18:00 UTC August 23 through 12:00 UTC August 30, 2005. The output hourly
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water elevation data downloaded from the ADCIRC website (adcirc.org) was used in this

study, and the water elevation contour map with a 1-meter interval at four times—3:00 am

and 17:00 pm UTC August 28 and 3:00 am UTC and 14:00 pm UTC August 29—was plotted

for illustrative comparison.

Katrina caused water elevation, and we wish to preserve more precisely the information

about the elevation data that are above 1 meter (the multi-interval constraint). Moreover,

some data points do not have meaningful values in this dataset and are represented by -

99999 (irrelevant data). Therefore, we need to treat these values properly to mitigate their

influence on the compression performance. By considering both irrelevant data and multi-

interval error-bound constraints, the compression quality (as shown in Figure 4.20) can be

improved significantly compared with the original compression quality under the state-of-

the-art SZ 2.1. By applying a global range with error bound to be 0.01 with our solution,

the visualization is almost identical to the original data’s, and therefore we use one column

(A) to demonstrate the visualization result as a reference. The fallback version shown in

(B) is to use the original 1D SZ compressor, which has only the Lorenzo predictor and does

not handle the irrelevant data; thus it has the lowest compression ratio even with a higher

error bound 0.1. “Composed” in (C) and (D) means we use a composed Lorenzo and linear

regression predictor to predict values. “Lorenzo” in (E) means we use only the Lorenzo

predictor with no linear regression. Comparing (B) and (C), our solution wins on the global

range test by handling the irrelevant data and using the composed predictor (both Lorenzo

and linear regression). Comparing (C) and (D), our multi-interval solution wins in both the

compression ratio and visualization result. Comparing (D) and (E), we can further improve

the compression ratio by using the Lorenzo predictor only and allowing some distortion in

the deep blue area.
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4.6.3 Multiregion Error-Bounded Compression (constraint D) Based on

Visual Quality

(A) Oursol (CR=54): multiple regions, create a 
small region-box for each significant region [190 0 
0:20 69 69], [290 0 0:20 69 69], [390 0 0:20 69 69], 

and give each region a dedicated error bound. 

(B) Original Data: the value ranges for the 
demonstrated regions are different, and each 
region requires a different precision to have a 

good visualization result.

(C) SZ3 All-0.01 (CR=27): the old method 
cannot take care of all regions. Even when 
giving a quite tight error bound 0.01, some 

regions will be hugely distorted.

S-200S-300S-400 S-200S-300S-400 S-200S-300S-400

Figure 4.21: QMCPACK visual quality comparison: Each slice has 69×69 pixels. We select
slice 200, 300, and 400 to observe the visual distortion because each has a different range:
slice 200 has range [-0.06, 0], slice 300 has range [-0.0016, 0], and slice 400 has range [-0.0025,
0.0005].

To demonstrate the power of the region-based compression method, we perform a post

hoc analysis of three regions in the QMCPACK dataset: slices 200, 300, and 400. Since each

slice will usually be observed in one analysis step, it is better to set a suitable error bound

for each slice instead of using a uniform error bound. For example, an error bound of 0.001

might be suitable for a slice with the data value range [-0.5, 0.5] but would be too large for

a slice with range [-0.0025, 0.0005]. In Figure 4.21, we can see significant distortion in the

selected regions in (C) even though the error bound is generally small (0.01) for the whole

dataset. Our solution improves the quality by applying tighter error bounds on the three

regions/slices. The compression ratio may not drop clearly, because the “tight-error-bound

regions” are small compared with the global dataset.

In addition to addressing some chosen slices with specific regions, the region-based com-

pression algorithm can achieve the effect of “different precisions for different areas” in each

slice. As shown in Figure 4.22, the left-bottom corner has much better visual quality than
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the other corners. With these two examples, we demonstrate the flexibility and locality of

this region-based compression algorithm. In general, setting some small regions for some

parts of the data that are of interest to the researchers will not influence the global com-

pression quality. Moreover, researchers can set any number of regions in any parts of the

dataset. Although it does not make sense to set hundreds of regions to select every possi-

ble interesting data points, the region-based algorithm offers the flexibility to accommodate

complex requirements and demands.

High Precision
Region

Low Precision
Region

Artifacts

Figure 4.22: QMCPACK Slice 450, value range [0, 8]: A higher precision 0.001 for data in
the area where x ∈ [0, 30] and y ∈ [30, 69], while keeping the error bound of other areas 0.5;
The compression ratio is 242, and the SZ3 method with global error bound equal to 0.5 has
a compression ratio 243. The region almost does not harm the compression ratio at all.

The feature of being able to set “different precisions for different areas” is extremely

useful in climate data. Scientists and policy makers from different nations may share the

same global climate data while focusing on their own country’s details. We use the CLDHGH

field in the CESM dataset to exemplify this feature. Since the dataset has a tight value range

and the neighboring values are smooth, it is hard to visualize the difference directly between
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the decompressed data and the original data in a small picture. We calculate the difference

between each data point and visualize the difference instead. In Figure 4.23 (B), we can

clearly see that the data inside the region (circled by a red rectangle) are much more precise

than in the other areas since there are almost no artifacts in the difference image. In reaching

the desired precision for the regions of interest, the region-based method clearly outperforms

the traditional SZ compressor.

(A) CLDHGH Data: The climate data 
map, the shape of which corresponds 

to the geolocations on earth

(B) The difference image using 

region-based compression

Figure 4.23: CESM with a region: while keeping the compression ratio high (CR=316),
we make the interesting region more precise (eb=0.01). The error bound for the remaining
regions is 0.02 in this example. If the SZ3’s global error bound is used to reach eb=0.01 for
the desired area, the compression ratio is 57.

We also evaluate the (de)compression time overhead of both multi-interval and multi-

region methods. The overhead of the multiregion method is proportional to the number

of regions, since each block needs to check the region list to find which region it belongs

to. In contrast, the overhead of the multi-interval method is highly related to the precision

of the prediction. To make the performance measurement as fair as possible, we use the

same error bounds for all regions and value intervals on 6 datasets, and we set 5 different

regions/intervals for each compression to guarantee that the overhead is observable.

The compression tasks are performed on the Bebop bdwall partition with a single node,
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Figure 4.24: Comparison of compression time: The reference point is the Fallback version,
which means using a uniform error bound for all data points. The overhead of the region-
based method is slightly lower than that of the multi-interval method.

and we record the average of 10 runs for each compression configuration. As shown in

Figure 4.24 and Table 4.13, the compression time overheads of both the multi-interval method

and region-based method are not very high. The region-based method has slightly smaller

overhead compared with the multi-interval method. The main reason is that our region-based

method does not follow a point-to-point evaluation; instead, we stipulate each intrablock of

the same region, cutting down considerable unnecessary computation. The same approach

cannot be applied to the multi-interval method because we cannot assume neighboring points

to be in the same value interval: actually, they are likely to be in two different value intervals

specified by the user. To summarize, both methods lead to a certain compression time

overhead, while the overheads are confined within an acceptable range.

Table 4.13: Compression Time and Overhead of Interval/Region/Fallback Methods
Method CESM QMC RTM MIRAN NYX ISAB

Interval(s) 0.20 5.39 1.20 1.08 5.70 1.08
Region(s) 0.19 4.94 1.18 1.03 5.46 1.01

Fallback(s) 0.18 4.80 1.12 1.00 5.18 0.96

Interval% 8.9% 12.3% 7.1% 6.8% 10.0% 13.0%
Region% 3.3% 3.0% 5.4% 1.9% 5.4% 5.7%
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4.6.4 Bitmap-Specified Error Bound Compression (constraint E)

Table 4.14: Compression Setting Definition
Setting Description

A SZ2.1 [54]: Lorenzo & Linear Re-
gression Predictor with one global
error bound

B Use SZ2.1’s predictor, but adopt two
error bounds set by a bitmap array

C Interpolation-based compression
with one uniform error bound [105]

D Our developed region-based error-
bounded compressor with two error
bounds set by a bitmap

A bitmap defines the most concrete error bound information since it specifies an error

bound for each data point. The overhead of storing a bitmap is non-negligible if not properly

compressed. In the following, we evaluate two methods for storing the bitmap-specified error

bounds: (1) the bitmap array is background information that is stored separately by users

as metadata (e.g., the world map); and (2) the bitmap needs to be stored with compressed

data so it must also be compressed.

Situation 1: We consider the CESM dataset as an example to evaluate the first bitmap

method. Our bitmap solution can help users specify different precisions with fine granularity

on irregular regions, in contrast with the other regular-region-based multierror-bounded

compression method.

In the CESM dataset, we retrieve the bitmap array by using the LANDFRAC field,

because it is a good match for separating the land and ocean area in a world map (as shown

in Figure 4.25 (F)). Applying LANDFRAC as the bitmap, we test four different compression

settings (described in Table 4.14) on the other five data fields, as shown in Table 4.15. In

Table 4.14 we can see that the bitmap solution sacrifices precision in the red area and can

obtain a higher compression ratio. The overall PSNR will decrease when enlarging the error

bound for red areas, but the compression quality for the interesting areas (here, the blue
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Table 4.15: Impact of compression settings on compression ratio (CR) and PSNR for the
six CESM fields of Fig 18: P 0/P 1 are the PSNR in the bitmap separated blue/red area,
respectively; CR’ is the compression ratio that takes the bitmap into account

.

Data Field Setting CR CR’ PSNR P 0 P 1
CLDLOW A: eb=0.01 21 - 44.94 46.74 49.59
min=-0.1 B: eb=0.01, 0.1 30 29.0 29.71 46.74 29.73
max=1 C: eb=0.01 138 - 47.14 49.23 51.26

D: eb=0.01, 0.1 224 176.6 32.31 49.22 32.34
FREQSH A: eb=0.01 16 - 44.73 46.76 48.97
min=0 B: eb=0.01, 0.1 22 21.4 28.67 46.76 28.67
max=1 C: eb=0.01 88 - 46.79 48.83 50.99

D: eb= 0.01, 0.1 126 109.5 32.10 48.83 32.13
LHFLX A: eb=1 30 - 60.27 62.28 64.55
min=-100 B: eb=1, 10 48 45.4 49.36 62.28 49.55
max=600 C: eb=1 106 - 62.41 64.58 66.40

D: eb= 1, 10 216 171.6 47.81 64.63 47.84
PBLH A: eb=5 37 - 53.04 55.20 57.07
min=0 B: eb=5, 15 45 42.7 47.72 55.20 48.55
max=1600 C: eb=5 107 - 55.03 57.24 58.99

D: eb= 5, 15 169 140.5 49.23 57.26 49.93
TSMN A: eb=1 66 - 44.78 47.04 48.64
min=200 B: eb=1, 10 191 155.4 36.19 47.04 36.51
max=310 C: eb=1 292 - 47.14 49.41 50.99

D: eb= 1, 10 812 411.5 31.64 49.24 31.66

areas are considered interesting areas) remains the same—P 0 almost does not decrease,

while P 1 decreases because of a larger error bound set in the corresponding area.

Table 4.15 demonstrates that our region-based multierror-bounded compression method

significantly outperforms all other solutions in compression quality. The reason is twofold.

(1) Our developed bitmap method can be used to fine-tune the precisions for different ir-

regular regions, which can preserve the quality for regions of interest more effectively while

reaching a high compression ratio. This can be verified by comparing the settings C and

D in the table. (2) As we discussed ear;oer, the interpolation predictor is much more effec-

tive than the linear regression predictor used by SZ2.1. This can be verified by comparing

settings A and C in the table.

Situation 2: In the second situation where the bitmap array needs to be stored together
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(A) Bitmap Compression: Land(eb=1), 
Ocean(eb=10), CR=55

(B) Bitmap Definition: Generating the bitmap 

according to the land/ocean boundaries

(C) SZ Original: global eb=1; CR = 34 (D) Raw Data Without Compression

Figure 4.25: The visualization indicates that bitmap-separated precisions may be suitable
to compress these fields.

with the compressed data, we compress the bitmap array by integer-based Huffman encod-

ing [53] and Zstd [110]. Specifically, the input data is the integer bitmap array with the same

number of elements as the original dataset.

Table 4.15 shows the compression ratio of our region-based multierror-bounded lossy

compression method (denoted as CR’) after embedding the bitmap into the compressed

data. Since uniform error-bounded compression does not need to store the bitmap array,

this column shows only the compression ratios for settings B and D. We observe that CR’

is close to CR (i.e., the compression ratio without storing the bitmap array) in most cases.
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The reason is that the bitmap array is fairly easy to compress with high ratios (reach ∼800

in this example) because of the limited number of error bounds. In fact, there are typically

few error bounds in practice because of the limited number of value intervals of interest or

regions of interest in general. Accordingly, the error level values would likely exhibit repeated

patterns in the bitmap array, especially for the consecutive data points in space, leading to

a very high compression ratio.

4.7 Case Study: High-energy diffraction microscopy workflow

High-energy diffraction microscopy (HEDM) is used to non-destructively probe the internal

structure of polycrystalline materials. In a typical HEDM workflow, thousands of x-ray

images will be captured while the object is subject to external mechanical loading to measure

internal strains and stresses within individual grains – crucial to understanding material

fatigue, failure, or deformation. The raw scans are collected on some edge devices and need

to be sent to a supercomputer for compute-intensive training and inference of ML models.

The computation on supercomputers generate analysis results as well some smaller ML/rule-

based models suitable for edge devices. The updated models and analysis results will then

be sent back to the edge device to guide the experiments. The whole workflow is illustrated

in Figure 4.26.

One of such ML models is to calculate the rare event indicator (REI)[107] to obtain quan-

titative actionable information about material states and guidance for future experiments.

As the detector constantly captures images at high frequency, a large amount of raw images

needs to be transferred to the supercomputer. Our compression techniques can significantly

improve the transfer efficiency in this application. In this section, we will evaluate the data

quality awareness of our compression techniques with both visualization and the results of

downstream analysis.

The raw data for each HEDM scan consist of 1440 frames, each frame of 2048x2048
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Figure 4.26: The illustration of a typical HEDM workflow without compression. We hope
to add our compression into the workflow to improve the efficiency of transferring raw scans
to the supercomputers.

pixels. Each raw data file is roughly 12.5GB, with a constant-sized header. The pixels are

represented by 16-bit unsigned integers ranging from 1,000 to 17,000. The prediction-based

lossy compression can easily reduce the data size for this type of data because the values are

quite continuous. Figure 4.27 shows the result of applying an error bound 30 to compress the

test scan, the compression ratio reaches 119, while the visualization of the decompressed data

looks almost identical to the original data. If the error bound is set too large (for instance

300), the compression ratio will be extremely high, but we can see noticeable artifacts and

distortions in the visualization results.

Next, we evaluate how much distortion lossy compression brings to downstream analysis.

We used the raw file of the base scan to build an embedding model and a KMeans clustering

model and then sent the original and decompressed test scan files to the models to obtain a

REI score. Note that the REI score is a predicted value by the ML model, but we can view it

98



Figure 4.27: Visualization results of the original and decompressed data of the layer 200
out of the 1440 frames. Note that we pick a random number 200 for illustration, and the
visualization of other layers look very similar.

as ground truth because we only modify the test data by compression without changing the

base scan data or the ML models. As shown in Figure 4.28, when the error bound increases,

the REI score increases because the distortion caused by compression creates unwanted

patterns/artifacts that influence the model’s decision and make it think there are more rare

events in the image. When the error bound is set too large (100 in this case), the compression

creates too much distortion that is very harmful to the REI score calculation. According to

Zheng et al.[107], the REI scores of most materials remain minimum until the mechanical

load increases to a point where the material ”cracks” and the REI score suddenly increases

from 0.3 to above 0.8. Therefore, if compression only causes a small REI deviation without

blurring the boundary for the material to crack, the error is in an acceptable range.

We further evaluated compression performance on logarithmic transformed data by ap-

plying the natural logarithm to each data point prior to compression, followed by lossy

compression of the transformed data. During decompression, an exponential function is
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Figure 4.28: The REI scores and compression ratio with respect to the error bound settings.
When the error bound is 0, it indicates the original file’s REI score and compression ratio
is 1 as it is the original file without compression. For the downstream experiments, the REI
score should be as close to the original file as possible for less distortion.

applied to restore the data to its original scale. The results are presented in Figure 4.29. Us-

ing logarithmic transformed data yields a smoother compression curve, as prediction-based

compression techniques are more effective on floating-point data. We also observe that the

compression ratio can get much higher while keeping the REI score very low and close to the

original data: when the error bound is set to 0.01, the REI score stays low enough while the

compression ratio is close to 600. Moreover, this approach aligns the error bound values with

those commonly used in existing literature, avoiding the need for unintuitive large integers

that are often difficult for practitioners to interpret or configure.

Since compression introduces computational overhead, we aim to investigate under which

network conditions it can actually improve overall transfer efficiency. Let the compres-

sion/decompression overhead time be Toverhead, the total file size be N , the compression

ratio be CR, the network speed be S. To ensure the total transfer time is less than direct

transfer, we need

Toverhead +
N

CR · S
<

N

S
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Figure 4.29: Floating-point data compression on the log-transformed data with a smoother
error bound to compression ratio curve.

Therefore, the network speed cannot exceed a certain value given the compression through-

put:

S < (1− 1

CR
)

N

Toverhead

Figure 4.30 presents the maximum allowed network speed for the given compression setting

to be useful in transfer optimization. We note that when the compression ratio reaches

10, parallel compression with 16 threads can already optimize the transfer performance for

2000Mbps networks. This means that we can set a very small error bound, keep the data

distortion minimum, and still expect to have a performance gain for data transfer. This

insight is very useful for users who want to preserve a very high level of data fidelity while

involving lossy compression algorithms in the workflow.
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Figure 4.30: The efficiency of compression based on different network conditions. We use
our proposed layer-by-layer logscale parallel compression method with layer depth 64, error
bound 0.01, and compression ratio 500. The error bound setting almost does not affect the
compression time so we also plotted two other compression ratio setting with lower error
bound in the same figure.

102



CHAPTER 5

FUTURE WORK

In this chapter, we discuss future work as well as some open-ended ideas that emerged

from designing, developing, and testing the Globazip framework. In general, we want to

expand the current compression/transfer framework to accommodate more data types and

application scenarios.

5.1 KV Cache Compression

The Globazip framework aims to enhance data transfer efficiency through lossy compres-

sion, especially for data types that existing methods struggle to compress effectively. One

such emerging data type is the KV cache in large language models (LLMs). To perform

complex tasks, users often prepend LLM inputs with lengthy contexts containing thousands

of tokens. For example, a user might provide domain-specific text to enable the model to

generate content based on specialized knowledge not embedded in the model itself. However,

processing long contexts introduces a delay in response generation, as the LLM cannot begin

producing a response until the entire context is loaded and processed. The computational

cost of processing a long context increases super-linearly with its length. To mitigate this,

many systems reduce context-processing delays by storing and reusing the KV cache, which

allows them to skip redundant computations when the same context is used again.

Nonetheless, when the next input token arrives, the KV cache of a reused context may

not be in the local GPU memory; instead, the KV cache needs to be retrived from another

machine, causing extra network delays. Some systems assume the KV cache of a context is

always kept in the same GPU memory between requests[31], and some others assume the KV

cache is small enough to be sent quickly by a fast interconnection[75, 108]. There are also a

few existing works that tried to mitigate this network delay problem by compressing the KV
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Cache to bitstreams[68, 16, 97]. It is interesting to explore how existing methods handle the

optimization of compression, transfer, and decompression to reduce the latency for generating

the first token in LLMs. Developing more efficient and specialized algorithms for compressing

KV cache data presents a promising direction for further improvement. Integrating the

Globazip framework into the LLM context could be a valuable future endeavor, expanding

the range of data types that can be effectively compressed and transferred.

5.2 Automated Data Quality Check

Globazip offers users a manual approach to preview data and test multiple error bounds

interactively. However, many users may primarily want to transfer data as quickly as possible

while ensuring that the data quality remains high and suitable for future use. They may not

be concerned with the specific error bound chosen, but they need confidence that any loss

of data quality will not compromise their downstream analysis pipeline. To address this, we

should integrate a mechanism into applications like the APS workflow[26]. This mechanism

would involve running a small analysis model on the compressed data and comparing the

results with those from the original data. The entire process should be automated, allowing

the framework to determine an appropriate error bound based on the comparison results.

The process can become more complex, as evaluating the entire dataset may require

significant amount of time and computational resources. To address this challenge, we will

explore various methods for strategically sampling a representative subset of the data. By

doing so, we aim to enable the downstream model to achieve a reasonably accurate conclusion

while minimizing the computational cost and processing time.

104



5.3 Automated Compressor Selection

Multiple compression algorithms (including ZFP[59], MGARD[4], SZ[53], SZ3[57]) are avail-

able in the GlobaZip app but they can be suitable for different user requirements and

datasets. One way is to use the aforementioned compression performance prediction method

to estimate the compression ratio and quality, but it only works for prediction-based com-

pression methods and when the prediction algorithm or quantization algorithm change, the

estimation can be inaccurate. A more reliable way is to sample certain parts of the data and

run the actual compression/decompression of each compressor and compare the results.

There are a few challenges in comparing the compressors for the optimization of transfer:

1. The sampled data do not necessarily describe the whole dataset. For exam-

ple, if we use the first a few layers as samples, these layers may contain trivial data.

Especially for time-series simulation, the beginning stage usually contains data that are

far simpler than the average data in the middle. If we sample data by jumping points

(e.g. select one point for every ten points), the prediction-stage results usually will

be different for whole dataset compression because the prediction is based on different

data points. The same problem applies to transform-based compressors as the data

blocks consist of different data points and would likely generate inconsistent results.

2. The selection process needs to happen very fast. There is always an option to

directly transfer the data without compression, especially when the network speed is

fast. If the selection and comparison cost too much time, there is no point to compress

the data at all for data transfer purpose, unless users only want to store the data in a

compressed format to save storage spaces.

3. Quantitative metrics may not demonstrate the artifacts of compressors well.

Quantitative metrics like PSNR and SSNI are just one number to describe the whole

dataset. They cannot capture important lossy compression artifacts that happen in
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local regions. A more intuitive and comprehensive description of the decompressed

data is needed. A proper visualization mapping can aid this situation.

It is valuable to explore automated methods that can identify the most suitable compres-

sor for a given application, as this can significantly enhance both efficiency and performance.

Traditional approaches to compressor selection often rely on manual evaluation and empiri-

cal testing, which can be time-consuming and prone to human error. By leveraging machine

learning and optimization techniques, it is possible to develop automated systems that ana-

lyze key factors such as input data characteristics, target performance metrics, and resource

constraints to recommend the most effective compressor. Future work in this area could

focus on building adaptive models that continuously learn and improve based on feedback

from real-world performance data. Additionally, exploring reinforcement learning methods

could enable the system to dynamically adjust its recommendations as new data becomes

available or as the operating environment changes. Another promising direction is the in-

tegration of neural architecture search (NAS) techniques to automate the design of custom

compressor configurations tailored to specific workloads. Furthermore, research into multi-

objective optimization could help balance trade-offs between compression speed, accuracy,

and computational cost, ensuring that the selected compressor aligns with the broader sys-

tem requirements. These advancements would not only streamline the selection process but

also lead to more efficient and scalable data processing pipelines.
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CHAPTER 6

CONCLUSION

Inspired by the widespread demand for storing and transferring large amounts of scientific

data in a daily routine, I explored lossy compression methods to optimize the overall transfer

performance. In this thesis, I packaged my findings and developed a user-facing app Globazip

that integrates several state-of-the-art compression algorithms and allows users to orchestrate

compression/transfer tasks on remote computing clusters. The findings are summarized

according to the five research questions I proposed at the beginning of this thesis.

In section 3.1, I explore five different data constraints that the compressors need to

handle. I design a multi-interval and a multi-region compression algorithm that can signifi-

cantly improve the visual quality in the critical value intervals and regions with the same or

even higher compression ratios. In the Nyx cosmology simulation, the multi-interval error-

bounded lossy compression can preserve the halo cells perfectly with a high compression

ratio up to 78, while the uniform error-bounded compression suffers significant distortion

of cells. In the Hurricane Katrina simulation, multi-interval error-bounded compression can

improve the compression ratio from 37 (based on SZ) to 80 (improved by 116%), even with

higher data fidelity in maintaining the shape of hurricane. The evaluation for the bitmap-

based solution shows that the cost to satisfying a customized complex region requirement is

acceptable and my solution can possibly be generalized to suit all kinds of fine-grained error

bound settings.

In section 3.2, I explore using features extracted from config, data, compressors to predict

the compression time and data quality. I also provide a user-friendly interface for users to

preview the data on remote computing clusters without transferring the data itself. The deci-

sion tree model can predict the wanted performance metrics rather precisely with acceptable

computation overhead.

In section 3.3, I propose and implement a novel reference-based genome sequence com-
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pression algorithm. I improve the sequence alignment procedure, propose a dominant bitmap

method for quality score compression, and design a compressed file storage architecture for

better parallel read capabilities. My proposed method achieves better compression ratios

than state-of-the-art algorithms, by employing a better alignment algorithm and an opti-

mized quality score compression method, and by not keeping string identifiers and read

orders.

In section 3.4, I propose a simple yet effective layer-by-layer method to parallelize the

compression of floating-point tensors. The proposed method uses a series of 2D or relatively

thin 3D layers with prediction-based compression. It avoids the memory limit constraint

and allows parallel compression for extremely large files. Because of the independence of

each layer, the method also allows users to compress only part of the data to visualize the

decompressed data without spending too much computation resources.

In section 3.5, I introduce my design of the compression/transfer orchestration app that

offers long-term endpoints deployed on multiple computing clusters. Users interact with the

app through a Qt5-based universal user interface that runs on their personal computer. The

app provides a uniform authentication procedure for users to run (de)compression and trans-

fer tasks on different clusters and help users avoid unreliable long-term download connection

problems through their laptops.

In section 3.6, I explore ways to further improve the data transfer rates according to

network patterns. I find file grouping can significantly improve the transfer speed when users

need to transfer a large amount of small files. Parallel compression is also very beneficial

for compressing large amounts of independent small files. Since (de)compression requires

application of the compute nodes, the waiting time for the compute nodes to be assigned

can be taken into consideration for further transfer time optimization.

Finally, in chapter 4, all the proposed methods are evaluated thoroughly with several

real-world datasets.
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I envision that the work presented in this thesis, when combined with additional work

in related areas, will lead to the contruction of cutting-edge data transfer platforms that

involves lossless and lossy compression. As shown in this thesis, the overall transfer time is

greatly reduced when applying my proposed compression algorithms especially for transfer

tasks to cloud servers where computers are connected by relatively slower networks. I also

make efforts to ensure the data quality can be previewed and respected for downstream

analysis tasks even after lossy compression. While my work in building Globazip have shown

significant progress in many of the areas to be explored, there is still much work to do as

some of the future directions are described in chapter 5.
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